
Australian Journal of Machine Learning Research & Applications
By Sydney Academics 53

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Resvevents – Track and Monitor Contract Journey in the

Truck Industry

Sameer Dongare

Data Engineer, U-Haul International Inc.

Abstract— In the truck industry, tracking a contract's journey from reservation to receipt

and monitoring key fields for changes during this process.

Introduction

In many countries, especially in the West, self-moves involving truck rentals and moving

supplies are common. People prefer this approach due to its cost-effectiveness, flexibility, and

the convenience of managing the move on their terms. However, in India and other South

Asian countries, the scenario is quite different due to the availability of cheap labor costs,

challenges in urban infrastructure, complicated vehicle rental logistics, etc. This paper talks

about a process that involves self-moves.

To secure equipment – Trucks, Trailers, or Tows- for their relocation, individuals utilize the

moving company's website, app, or customer service to make online reservations.

Alternatively, they may visit the company's stores to acquire equipment or purchase relevant

items to facilitate their move. The reservation is made by choosing the type of equipment.

Along with that, the customers may need some moving supplies like boxes, tapes, etc.

Sometimes, they must rent utility/applicable dollies to help with their move. Subsequently,

situations may arise where there is a necessity to change an existing reservation, which could

involve adding additional items, swapping an already booked truck or trailer for a different

model, obtaining upgraded insurance coverage, or modifying the pickup location. Many

reasons could lead to the need for these adjustments, such as changes in plans, evolving

requirements, or unforeseen circumstances.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 54

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Fundamentals

Here are some fundamental terms related to the truck rental industry and the technology

mentioned in this article.

Q. What is a Contract?

Ans: When a reservation is made for equipment like a truck, trailer, or tow, a unique contract

is created.

Q. What are Contract Events?

Ans: Contract Events refer to any changes made to the Contract during the rental period.

These could include a reservation update, equipment pickup, modifications during the rental

period, or equipment return. Each of these updates constitutes a Contract Event.

Q. What is the source of Contract Events?

Ans: Contract events are written in real-time and sent to event streaming platforms such as

Apache Kafka, Event Hub, etc. This case study utilizes Kafka. You can find more information

on this in the last section.

Q. Where are the processed events written to?

Ans: The processed events could be written to any persistent data storage, such as a

Databricks Delta table. The last section provides more information on this.

Problem Statement

The Kafka topic serves as a platform for the real-time publication of contract transactions. We

could call it events that happen to a reservation or a contract – hence the name Resvevents

(Reservation Events!). The Data Team wants to analyze the progression of a contract, from the

reservation initiation to the customer's equipment pick-up and, finally, the return of the

equipment. Among the many fields in the Kafka topic, the team aims to scrutinize a few

critical fields of interest. The team seeks to understand the frequency of updates to these fields

and explore the underlying reasons for such modifications.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 55

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Objective

The team's objective is to capture alterations in the values of the critical fields mentioned

earlier for each contract, tracking the changes from the reservation's inception to the

equipment's return. This analysis is expected to provide insights into the factors influencing

these changes. Furthermore, the team intends to capture these modifications in real time to

establish a communication channel informing others of such occurrences.

Here's a table showing a few critical fields and the change in their values:

Field Name
Original

Value

Changed

Value

Pickup_Date 2024-08-01 2024-08-02

Pickup_City

_State

Phoenix_A

Z

Scottsdale

_AZ

…

…

Truck_Mode

l
10’ 15’

Trailer_Mod

el
Bike Trailer

Motorcycl

e Trailer

Solution Approach

In this case study, it has been determined that creating a real-time streaming consumer (Spark

Structured Streaming Consumer) is essential to reading the Kafka topic effectively. This

consumer is responsible for identifying any changes made to the vital fields within the micro-

batch and marking these changes in a column of the Boolean array within the final Databricks

Delta table. The choice to utilize an array of Booleans will be further discussed in later sections

of this document.

This task is quite complex because the consumer processes around a million contract

transactions within a single micro-batch before persisting them to a Databricks delta table. It

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 56

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

is crucial that, before saving, the values in these critical fields are compared against those in

previously stored records for each unique contract.

Main Comparison Logic

This solution utilizes a streamlined one-step process instead of the traditional read, transform,

and save method. In a conventional process, the data is read, transformations are applied, and

the transformed data is saved in a table. As part of this approach, we establish a procedure

for storing the most recent contract instance in a separate table for future reference. When a

new contract instance is received, we compare it with the previously saved contract in a

separate table. We then identify the key fields with modified values and incorporate them into

the main table. This innovative approach entails merging old values from the individual table,

new values from the current feed, and a flagged comparison to create a new record, which is

then added to the main table. This method significantly enhances the accuracy and real-time

capabilities of our data analysis.

Architectural Flow

Figure 1 presents the technical architectural flow for generating contract events, referred to as

Resvevents. This is achieved by reading the data from a Kafka topic into the consumer and

storing variations in the target columns.

Fig. 1. Architectural Flow

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 53

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Legend

Id
Table/View

Name
Description

T1
resvevents_l

atest

The latest saved

instance of a

contract

T2
resvevents_

all

All instances of a

contract in the

order of their

receipt

V1
resvevents_

view

View of contract

events in the

current micro-

batch

rv_v

1
rv_v1

Latest contract

instance in V1 by

KafkaTimestamp

rv_v

2
rv_v2

The second latest

contract instance

in V1 by

KafkaTimestamp

rv_v

3
rv_v3

The third latest

contract instance

in V1 by

KafkaTimestamp

V2

resvevents_

previous_in

stance_view

View of previous

events for current

contracts, created

by joining current

events (V1) with

previously saved

instances in T1

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 53

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Architectural Flow Explanation

1. On the left is the source of contract transactions, the Kafka topic Contracts-Save, which the

Databricks Spark Structured Streaming consumer consumes.

2. The consumer connects with the Confluent Schema Registry to get the contract transactions

message schema.

3. The consumer filters out all the unwanted transactions and splits the micro-batch

DataFrame into individual data frames, having only the required columns, representing the

main contract – having all the standard fields, truck, trailer, and tow data frames.

4. All these DataFrames are merged by contract and ordered by the latest KafkaTimestamp,

i.e., in the descending order in which they were written to the Kafka topic. The view—V1

resvevents_view—is created from the merged DataFrame. However, to keep the data volume

in check, we consider each contract's top three contract instances, represented by rv_1, rv_2,

and rv_3.

5. These contracts are joined with Table T1-resvevents_latest, which has data on previous

iterations for them, and a view—V2 resvevents_previous_instance_view—is created. This step

is essential as, ultimately, for every contract, we want to compare the current values of specific

fields to their previous values.

6. Now comes the crucial step of creating the main record for the table T2—resvevents_all.

Here, we join view V1, which has current micro-batch contract instances, table T1, which has

previous iterations’ contract instances, and view V2, which has previous iterations' contract

instances.

7. For any contract, Table T2 always has the current and previous values (just the last iteration)

for specific fields.

8. The latest contract instances are updated to table T1 for the next iteration.

Steps 4 -5 and the basic SQL code are shown in the next section.

Data Processing Logic

• Block 1 in the above Arch Flow—The Databricks Spark Structured Streaming Consumer is

utilized to read the Kafka topic for the contract transactions. The consumer connects to the

Confluent Schema Registry using the message's Schema ID to obtain the schema required for

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 54

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

message deserialization. Following this, the contract transactions are filtered to retain Truck,

Trailer, and Towing equipment transactions.

• Blocks 2, 3, and 4 – Standard fields are extracted from each transaction after filtering, and a

main-contract DataFrame (DF) is created. This main-contract DF is sorted by the Unique ID

and KafkaTimestamp in descending order, ensuring that the latest transactions are positioned

at the top. Subsequently, the main-contract DF is merged with respective Truck, Trailer, and

Towing transactions to create the Latest_Contract_Instances view. A view, named

resvevents_view – V1, is then established based on this merged data.

• Further steps involve splitting the data into three segments to focus on the top three latest

instances—rv_1, rv_2, and rv_3.

• Subsequent actions are pivotal to the overall process, represented by connections 5 and 6 in

the above architectural flow.

• Table T1 stores the latest saved instance for a contract. The views rv_1, rv_2, and rv_3 each

are independently joined with contracts in T1 to form a view for previous instances, known as

resvevents_previous_instance_view. New contract entries are added to T1 while the existing

ones are updated.

• Finally, the latest records are generated by merging the current contracts from V1, previous

instances from V2, and the newest contract instances from T1 and appending them to T2. Before

writing to T2, the current values for specific fields are compared to their previous values. The

change status is then updated in the array of Boolean fields, as illustrated in the code snippet

below.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 53

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

SQL code template to Update/Insert into T1

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 54

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

MERGE INTO T1 a

USING V1 b

on a.UniqueID = b.UniqueID

WHEN MATCHED THEN UPDATE

 Set a.Status = b.Status,

 a.Field1 = b.Field1,

 a.Field2 = b.Field2,

 a.Field3 = b.Field3,

 a.Pickup_Date = b.Pickup_Date,

 a.Pickup_City_State = b.Pickup_City_State,

 …

 a.TruckModel = b.TruckModel,

 a.TrailerModel = b.TrailerModel,

 a.FieldsUpdated = array(

 cast(!(a.Pickup_Date = b.Pickup_Date) as

int),

 cast(!(a.Pickup_City_State =

b.Pickup_City_State) as int),

 ...

 ...

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 55

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

 cast(!(a.TruckModel = b.TruckModel) as

int),

 cast(!(a.TrailerModel = b.TrailerModel) as

int),

)

WHEN NOT MATCHED THEN INSERT

(UniqueID,Field1,Field2,Field3,Pickup_Date,

Pickup_City_State,…,TruckModel,TrailerModel,F

ieldsUpdated)

VALUES

(b.UniqueID,b.Field1,b.Field2,b.Field3,b.Pickup_

Date,

b.Pickup_City_State,…,b.TruckModel,

b.TrailerModel,array(0,0,…,1,0))

Identification of value change in a specific field

In the above SQL Code, the bold font compares the old field values to the new ones and casts

the Boolean to an integer. So, if the value has changed, then this position of the FieldsUpdated

array field will be 1; otherwise, it will be 0. In the above SQL Code, the TruckModel’s value

was updated from the previous transaction as it has a 1 in the FieldsUpdated array.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 54

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

SQL code template to Update/Insert into T2

INSERT INTO T2

SELECT

a.UniqueID,a.Field1,a.Field2,a.Field3,a.Pickup_

Date,

a.Pickup_City_State,…,a.TruckModel,

a.TrailerModel, pi.Field1, pi.Field2,

pi.Field3,pi.Pickup_Date,pi.Pickup_City_State,

pi.TruckModel, pi.TrailerModel,

b.FieldsUpdated

FROM V1 a JOIN T1 b on a.UniqueID =

b.UniqueID

 LEFT JOIN V2 pi on a.UniqueID =

pi.UniqueID

In the above SQL Code, for a contract, the old values, the new values, and a comparison of the

critical fields—FieldsUpdated—are added to the Databricks delta table resvevents_all.

Integration Details With Kafka

Brokers

This case study uses bootstrapped on-premise Kafka brokers to give us complete control over

the Kafka deployment, configuration, and management. However, one could also use Kafka

brokers on Confluent or any other cloud. This way, the cloud company does the deployment,

configuration, and management, and we can concentrate on the business logic.

Topic and Partitions

This approach employs a topic comprising twenty partitions for the contract events data. The

decision to configure the topic with this specific number of partitions aligns with the necessity

to accommodate high-volume and high-velocity data.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 55

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

Consumer Group

In the current consumer group setup, we implement a single consumer that aligns with the

maxOffsetsPerTrigger specification and effectively fulfills its intended purpose.

maxOffsetsPerTrigger is set to 500K, half its maximum allowed value.

Error Handling and Recovery

Checkpointing

Checkpointing is a crucial aspect of stream processing that ensures fault tolerance and enables

failure recovery. This solution uses a persistent path on the Databricks Delta file system for

checkpointing.

Handling Kafka Errors

As the consumer is a Databricks spark structured streaming job, set the retries to four if the

job fails due to a Kafka or intermittent network error.

Monitoring and Metrics

Confluent Control Center

This would help read the message instantaneously to ensure that the schema returned by the

Confluent Schema Registry is correct and can be decoded. This would be mostly done during

the test phase.

Grafana

Grafana monitors the Kafka feed in real time to see if there has been any downtime.

Scaling Considerations Topic and Partitions

Auto-Scaling

While configuring the consumer job cluster, a maximum number of worker nodes can be

given, and auto-scaling could be enabled to add and remove workers based on the processing

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 56

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

volume.

Integration with Confluent Platform Features

Schema Retrieval

This solution uses Confluent Schema Registry to manage schemas for our Kafka topics. This

ensures that data is serialized and deserialized correctly, avoiding issues with schema

evolution and data consistency across services.

Future Enhancements

Future Enhancements

• This architecture allows upscaling to multiple consumers, each processing data for a

specific equipment category and distributing the load across various consumers.

• Create a feedback channel by writing changes to the critical fields to a Kafka topic for

all the stakeholders to consume.

Conclusion

This initiative is a significant advancement in the truck rental industry's use of big data

technologies for real-time tracking and analysis of contract transactions. The case study sets

the stage for a more insightful and efficient decision-making process within the industry,

showcasing the power of data-driven approaches in improving operational frameworks and

service offerings in the truck rental sector. It demonstrates the importance of data analysis and

research in driving industry advancements. Tracking key fields and understanding factors

influencing changes helps us make informed decisions and improve operations for a better

customer experience.

Short Descriptions of the Technologies Used

Apache Kafka

Apache Kafka is a distributed event streaming platform that handles high-throughput, real-

time data feeds. Originally developed by LinkedIn, Kafka allows for the publishing, storing,

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 57

Australian Journal of Machine Learning Research & Applications

Volume 4 Issue 2
Semi Annual Edition | July - Dec, 2024

This work is licensed under CC BY-NC-SA 4.0.

and processing large streams of events in a fault-tolerant manner, making it a core technology

for real-time analytics and data integration.

Confluent Schema Registry

The Confluent Schema Registry is a centralized service for managing schemas and ensuring

data compatibility in Apache Kafka environments. It supports versioning, validating, and

evolving schemas in formats like Avro, JSON, and Protobuf, enabling consistent data

serialization and deserialization across distributed systems.

Azure Event Hub

Azure Event Hub is a scalable data streaming service provided by Microsoft Azure. It enables

the ingestion and processing of millions of events per second from various sources. Event Hub

is designed for real-time analytics and integrates seamlessly with other Azure services for

comprehensive data processing and analytics workflows.

Databricks Delta Table

Databricks Delta Table is a storage layer in the Databricks Unified Data Analytics Platform

that combines the features of data lakes and data warehouses. It provides ACID transactions,

scalable metadata handling, and unified batch and streaming data processing, ensuring data

reliability and performance for large-scale analytics.

Spark Structured Streaming Consumer

Spark Structured Streaming Consumer is an Apache Spark component that enables real-time

stream processing using a high-level API. It supports fault tolerance, exactly-once processing

semantics, and integration with various streaming sources like Apache Kafka and Azure

Event Hubs, making it ideal for building robust and scalable real-time data pipelines.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

