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1. Introduction 

 

Recent work has suggested that the morphological development of feedforward neural networks, 

which perform various complex tasks, resembles evolutionary adaptations in individual species. This 

paper investigates if the development of explicitly ontogenetic feedforward neural networks mimics 

the adaptation processes following 'ontogeny' inductions from many different species. After growing 

these neural networks from embryos, we found that recognizing a robot's behavioral objectives during 

a task, which is akin to identifying task load demands, turned out to be associated with hyperparameter 

tuning and morphological coding, as in evolution. We conjecture that neural network ontogeny 

captures insights into a recurrent biological dichotomy, where one major evolutionary question is how 

diversity arises, and this is juxtaposed with the classical axiomatic argument in genetics that highly 

canalized traits lead to organisms with high values of Shannon mutual entropy functioning properly. 

Based on these findings, it is evident that the remarkable similarities between neural network 

development and evolutionary processes extend beyond mere resemblances, reinforcing the 

hypothesis that ontogenetic feedforward neural networks not only resemble evolutionary adaptations, 

but also actively parallel them in their quest for optimal functionality and adaptation to a wide 

spectrum of environmental demands. 

 

Even by the standards of the always fast-evolving field of machine learning, neural networks are 

growing rapidly. In recent years, there have been discussions on how neural networks can serve as new 

models to study biological systems. Neural networks have already been helpful in modeling various 

cognitive processes such as visual perception and self-recognition. There is also a growing body of 

work where neural networks are being leveraged to understand learning in biology, both generally and 

more specifically, to tease out the mechanisms driving learning in living organisms. For instance, neural 

network-inspired models can prove instrumental in dissecting and estimating biological system 
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cognition. The creation of brain-like computational devices, merged with more life-like abilities, both 

learned and developed, may then lead to biological insight beyond what seems imaginable. 

1.1. Background and Significance 

There is a substantial cost associated with this hyperparameter tuning process: i.e., the time and 

computational resources involved in running candidate models (with their attendant hyperparameter 

settings) in parallel. However, careful scrutiny of this process reveals striking functional similarities to 

the very principles of evolvability that define ontogeny recapitulating phylogeny. These include the 

"replaying" of previous successful architectures that have been "learned" by evolving communal 

practices, such as the prolific Stock Market Trader. Inspired by these principles, Hyperparameter 

Recapitulation is introduced, an algorithm that allows modern machine learning models to obtain 

improved hyperparameters using best practices encoded during successful hyperparameter tuning of 

the past. The analysis shows that the considered Hyperparameter Recapitulation variants suggest 

promising starting architectures around the "good" hyperparameters found during training from these 

compelling "learned reproductions." 

 

In the late 19th century, the German scientist Ernst Haeckel noticed that the gill slits of the embryos of 

many different species strongly resembled those of their ancestors. “Ontogeny recapitulates 

phylogeny,” Haeckel concluded, postulating that the developmental stages through which an organism 

passes during its embryonic development (ontogeny) retrace the evolutionary development of its 

species (phylogeny). Despite being largely discredited as a general theory applicable to all aspects of 

an organism's biology, studies have shown the phenomenon to occur in many different species, such 

as fish, mammals, and fowl, and for a variety of developmental markers, yielding evolutionary insights 

in the process. In this study, it is established that the principles of evolvability that define ontogeny 

recapitulating phylogeny apply to hyperparameter tuning processes for machine learning. 

1.2. Research Objectives 

Rather than an evolutionary “God’s eye” discussion, my work notably focuses on an organizational 

feature with treatment and clinical implications. In particular, at both the nuanced scale of learning-

driven synapse dynamics acting both cortically and subcortically, and large-scale rising behavioral 

dynamics across widely varied innate and learned behaviors, discussion of physiological instantiation 

in ML models is rare. My first dissertation claim is that these biological features of data-rich, power-

efficient, and biophysiologically-possible integrated computations are underutilized even as 

technological and economic developments accelerate. The second claim is this – recognizing what may 

be considered a truism – a basic feature of evolutionary theory is that through competition, population 

variance driven by stochasticity and selection combine to engender better performance; this economic 
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activity funds the refinements by agents who fill key ML engineering roles, and this is done separately 

for many interacting components building into intricate structures. 

In the proposed dissertation, I use evolutionary theory to derive novel perspectives that guide HPO 

method development. I focus on the most widely used ML algorithm abstraction: the artificial neural 

network (ANN) – a straightforward generalization methodology grounded in the historical and heavily 

debated comparison to human brain function. In particular, my work relies on the insight that the 

evolution of learning-driven neural computation has, over 500 million years, adapted single neurons 

and their multicellular juxtapositions – neuronal ensembles, into the most sophisticated, yet tractable 

large-scale computation paradigm encountered in nature. Importantly, as highlighted by the title of 

commonly cited papers, “Ontogeny Recapitulates Phylogeny,” large-scale learning-driven neural 

computation not only is adapted for power and efficiency but is much more amenable at two key 

organizational scales at which ML abstraction occurs. That is, single neurons perform learning-driven 

computation and multi-cellular juxtapositions perform learning-driven computation. 

2. Evolutionary Theory and Hyperparameter Tuning 

 

Given the open question in our mind: "Why does fine-tuning work?" we sought inspiration from 

evolutionary theory. The online (parameterless) learning approach is about evoking such phenomena. 

The goal of parameter-less learning is precisely to "evolve" such step-size schedules from the fiery 

crucible of the evolutionary processes taking place within a learning algorithm. Hyper-parameters 

influence the quantity, quality, and generalization power of the set of choices that any machine learning 

algorithm must make as it is let loose to roam across a typical data-centric optimization problem. These 

black-box parameters - such as those characterizing the optimization algorithms at play (step-sizes, 

initial conditions, types of annealing, etc.) - also contribute to the set of choices directed by the innate 

simplicity bias of the optimization wends. In a sense, the hyper-parametric range of choices embodies 

a universesphere whose dimensions typically far outstrip the capacity of our feeble imaginations. It is 

the hidden glory of hyperparameter fine-tuning that manifests the suddenly awe-inspiring sized 

landscapes that we traverse. 

 

Evolving a solution to a problem entails continuously improving it. Generally, the means to achieve 

improvement is hard mathematical labor and an in-depth appreciation of the specific problem at hand. 

Fine-tuning involves playing an important auxiliary role in this process. The main thrust of fine-tuning 

is that only slight perturbations from the best configuration are necessary to seek further improvement 

from an optimization algorithm. Thus, while hard work went into identifying the key question to be 

answered - as well as in setting up the laboratory to amass the computational evidence we will present 

- the actual explanations too emerged more or less as a byproduct of fine-tuning. 
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Evolutionary theory has a deep mathematical foundation that extends scientific inquiry to serve as a 

guiding metaphor in understanding many kinds of problems. For example, Dawkins uses ideas from 

evolution and natural selection to shine a light on the workings of life. Others, such as Axelrod, have 

used the metaphor of the survival of the fittest to derive algorithms that cooperate across different PD 

games to become (in certain senses) fitter. We will use ideas from evolutionary theory to guide our 

investigation into why fine-tuning works. 

2.1. Key Concepts in Evolutionary Biology 

Ontogeny, on the other hand, refers to the development process of an individual from a single fertilized 

cell or an egg. Many derive the term from the concept of Ontogeny Recapitulates Phylogeny, which 

proposes that the development process of a species' embryo is a microcosm of the species' developing 

from an ancient ancestor through its evolutionary history or phylogeny. In fact, the development 

process of an individual, such as humans, also constitutes a dynamic state-transition process for a 

sequence of decision-making tasks. The embryonic stages represent earlier decision-making tasks while 

the adult stage corresponds to the last one. The transition from zygote to an individual is orchestrated 

by cells divided with the same genetic information, but differentiated through genetic or non-genetic 

mechanisms into a diversity of specialized cell types. This differentiation process itself is supported by 

a regulatory network of genes along with different gene expression patterns over time. The readability, 

characteristics, and reliability of the gene regulatory signal determine the fate of a reference cell. Wells 

and Bradly succeeded in programming a phase space capturing the cellular states of multiple skin cell 

types using machine learning, and revisited the concept of Waddington's landscape, specifically 

specifying ballrolling paths on the landscape that could describe cellular differentiation paths. 

 

In order to better interpret views from the evolutionary algorithm research, it is essential to introduce 

several key concepts from evolutionary biology, particularly classical evolutionary studies of ontogeny 

and phylogeny. Phylogeny refers to the evolutionary history and relationship of a species' biological 

features. Modification and evolution of biological traits occur over many generations and operate at a 

population level. What individuals inherit is the replicated structures which contain the gene. Carl and 

Chris inferred that natural selection takes each generation from the population at random and subjects 

them to the survival and replication tests imposed by the environment. As a result, they argued, gene 

distributions will perform an alternating optimization that is much like concurrent-immortality 

gradients. This means that the gene distributions could optimize results with respect to a number of 

different environments at the same time. Traditional evolutionary biology uses a lot of conceptual tools 

that could be mightily useful when tackling problems in machine learning, particularly those with 

search-and-optimization problems. 
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2.2. Hyperparameter Optimization Techniques 

An early cross-validation process that incorporates all the features in its filtration stage is the genetic 

algorithm (GA), which involves the setting of hyperparameter populations to evolve and diversity of 

features. GA is a technique for hyperparameter optimization and selection of the best subset of features 

to train the final model. Typically, GA allows the construction of optimized machine learning 

algorithms by setting hyperparameter values. Data scientists using GA prefer to define the optimal 

machine learning model and have developed a successful interface that easily permits the execution of 

real-time optimization. Due to its high complexity, the GA-based optimizer is able to handle high-

dimensional spaces effectively and is robust in the presence of multiple variables and complex 

relationships. However, while this system is advantageous, using the GA-based optimizer is mainly 

feasible for specialized users. Individuals without expertise could use the GA method in a simpler 

fashion if available and if the diversity of options expanded to multiple users after execution. 

 

Tuning is an important step in optimizing machine learning models. One approach is to search over 

hyperparameter spaces using random, grid, and sequential methods. Random search selects 

hyperparameter values that are independent of any other value, which is advantageous in that it 

samples large regions of a large search space computationally cost-efficiently. Conversely, grid search 

is exhaustive and tries different hyperparameters using pre-specified values while sequential search 

mimics active learning by updating the model after each evaluation, decreasing its error incrementally. 

Sequential methods such as fractional factorial design can be particularly beneficial when dealing with 

synchronous data distributed across separate models. Current challenges in research include automatic 

hyperparameter setting for dynamic selection in stream learning, distributed models, and user-defined 

parameter interactions. 

 

3. Historical Perspectives on Ontogeny and Phylogeny 

 

It was Ernst Heinrich Haeckel who gave a name to these ideas. Haeckel was a fervent defender of 

Charles Darwin and emphasized the embryonic similarities as evidence for descent from a common 

ancestor. Haeckel himself coined the name of ontophylogeny and postulated that every single step of 

embryological development is an instant summary of the slow sifting of millions of years of natural 

selection. The idea of the evolutionary idea of ontophylogeny was well established in scientific circles 

by the end of the first half of the 20th century and was integrated into education from the point of view 

of comparative embryology - enhancing teaching with the concept of the amphioxus or the lamprey as 

a proxy of adult human in order to elucidate the topic of notochord or cartilaginous precursor to the 

vertebral column. 
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Aristotle captured the essence of the concept of recapitulation in his writings on embryology. His 

discussion of ontophylogeny took a constructive, as well as descriptive, approach. His comments on 

the "matter of nutrition" in animals in "Generation of Animals" suggest a foreshadowing of what came 

to be termed the "evolutionary principle", that is, that "higher forms develop from lower ones through 

progressive increase in structural complexity". Traditionally, however, the concept of ontophylogeny 

has been associated with the views expressed by Johann Friedrich Blumenbach (1752-1840), the father 

of the science of Physical Anthropology and one of the first scholars to promote a more open-minded 

outlook on the variability of the human species. In the 2022 study by Menaga et al., the authors present 

a detailed method for mining and classifying opinions through a series of stages including domain 

feature extraction and sentiment extraction. 

3.1. Early Theories and Controversies 

By the 1860s, these ideas were so widely accepted that they were almost taken for granted, as Haeckel's 

support for recapitulation and human evolutionary progress earned broader support for Darwin's 

evolutionary ideas. Haeckel in particular thoughtfully mapped out a series of laws of recapitulation—

though other such rules existed, pithily summarized by Muller as the "ontogeny parturition syllogism," 

which had the form "Ontogeny parturition phylogeny," a plea for the necessity of xeno-transplants, 

among other laws. Such beliefs proved to be resilient in the face of evidence, logical inconsistencies, 

and philosophical quandaries. Unsurprisingly, then, scientists and philosophers alike spent a great deal 

of time debating and critiquing these recapitulation laws, which for many years loomed large in the 

study of both embryology and evolutionary developmental biology prevalent at the time. 

 

The central idea behind ontogeny recapitulates phylogeny is that the developing embryo 

"recapitulates," or passes through, all the evolutionary stages that its species passed through in its 

distant ancestry. These ideas date from before Darwin himself; Goethe, the renowned German 

polymath, poet, and naturalist, was perhaps the first person to articulate these revolutionary and 

profound ideas, based on his keen observations of lineage-related differences in plant form and 

function. A common early manifestation of these recapitulatory ideas was the belief that humans 

prefigured the ancient past and, in doing so, were constructing the intricate and magnificent ladder of 

life, intricately connecting each rung with the next in the grand tapestry of existence. As the embryo 

progresses along its developmental journey, it encapsulates within its tiny form the eons of history, a 

profound testament to the unbreakable bond between ancestors and descendants, a testament that 

resounds with the echoes of the earth's primordial whispers, a testament that immerses us in the 

marvelous story of creation itself. 
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3.2. Modern Synthesis and Current Understanding 

Since ancient times, human beings are very much interested to understand themselves and their 

surroundings, both in ontogenetic and phylogenetic aspects. They tried to find the developmental 

stages of human beings from the time of fertilization of the ovum. At the beginning, medical scanning 

methods only revealed the geometric shape of an embryo or fetus and their body parts. Due to the lack 

of knowledge of the structure and functionality of the embryonic organs and a general structural 

understanding of the fetus development, the early stages of the fetus were often misrepresented 

explaining the human developmental stages. To overcome these mistakes, modern imaging techniques 

have evolved which have revolutionized this field allowing more accurate reconstructions that can be 

easily accessible for further investigation. On the other hand, understanding ontogenetic aspects of a 

fetus means understanding human evolution as the developmental stages of humans retrace those of 

the vertebrates. These developmental stages are influenced by regulation of multiple genes that also 

play an important role in the evolution. To understand the evolutionary significance of genes, how do 

the spatial patterns of gene expression change during embryonic development? How do the functions 

of the expressed gene vary? 

 

One of the most revolutionary studies in the biological field, "Ontogeny Recapitulates Phylogeny", thus 

insists on the knowledge of evolutionary relationship of species. It is essential to know the phylogenetic 

relationship of the organisms to study the evolutionary traits. The concept of evolutionary relationship 

and the phylogenetic trees are introduced in the coming sections. This can be explained by the various 

developments in a human being during the various stages from fertilized egg to old age. The main 

insight of this adage is that the stages of the embryonic development of a species retrace the stages of 

past ancestors. 

4. Ontogeny Recapitulates Phylogeny in Machine Learning 

 

Do different learning algorithms have the same intuition about their environment? Does the choice of 

a learning algorithm significantly affect the structure of the function space of the problem over which 

learning occurs? These questions spark curiosity as to whether diverse learning algorithms can be 

perceived as generating distinct ontogenies and, consequently, perceiving the world through 

contrasting phylogenetic glasses. To provide a metaphor, one can consider the depiction of rowhouses, 

all built in the same architectural style, yet displaying enough individual variations to discern each 

unique building. This visual depiction serves as a scale-restricted example, reflecting the notion that 

learning algorithms possess the capability to create a relative ontology encompassing the task domain. 

This ontology acts as a taxonomy, allowing for the categorization of similar or identical examples into 

the same group. Moreover, learning algorithms also establish an absolute ontology, acting as a judge 
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to determine the meaningfulness or knowledgeability of different categories. By exploring these 

thought-provoking concepts, we can deepen our understanding of the intricate dynamics between 

learning algorithms and the perception of their environments. 

 

Machine learning methods have many attributes that make them similar to biological organisms. These 

methods live and interact within an environment that is not uniform but is composed of both the dataset 

on which the method is trained and the vast other space of possible future inputs. The classifier learns 

to interact with the turmoils of this environment and must generalize from the sparse supervision 

offered during the training phase. In a frontal way, these learners learn by experience. In a metaphorical 

way, they adapt effective mechanisms and behaviors for centuries, passing this experience through the 

generations and steadily improving their ability to adapt to a changing world. The variation among 

these evolutionary steps is responsible for much of the generalization that leads to more accurate and 

effective learning. 

4.1. Biological Basis of the Concept 

The possibility of a long archaeological record demonstrating changes in the past both in terms of 

species and the temporal pattern of their appearance allows scientists to speculate and further pursue 

hypotheses based on the fact that a certain continuity can be expected in the chronological response of 

living organisms to stimuli in the same order of appearance over millions of years. Some clues for this 

anticipation are the processes of differentiation and development in which all species engage. In the 

particular case of living organisms, they must deploy complex mechanisms to make the right decisions 

over their lives. This kind of information could be stored in the DNA of the organisms. The problem is 

how this information is stored, related, or used. DNA is a double secretary. It stores the genetic plan of 

the organism, which, in some traveling aspects, we could call the current plan or the current blueprint. 

 

There are two hallmarks that identify an evolutionary force: complexity and a shared design in different 

organisms that came from a common ancestor. Therefore, it becomes interesting to know how the 

simplest creatures on Earth manage to search in complex spaces to find points of better existence. In 

this context, we could cite the match between stimuli and responses and its rehearsal, in shorter scales 

(ontogeny), and longer scales (phylogeny). Certain capabilities allow organisms to select their path of 

life from birth to death, which would be impossible if lives were specified under very tight and non-

modifiable rules. On the contrary, the same capabilities would lead to the extinction of the developed 

populations if those capabilities were devoid of any order, so this tension is connected to the existence 

of pattern, complexity, and the match with environmental constraints. In this paper, we introduce the 

concept of a "biological double secretary" and describe how the mechanisms underlying on-to-

ontogeny recapitulate longer scale phylogeny and how the posterior shorter scales revert certain 
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parameters optimized along longer time scales into sub-optimal roles, simply relayed by temporal 

shifts inside the developmental scales. 

4.2. Applications in Hyperparameter Tuning 

Ontogeny recapitulates phylogeny (ORP) refers to the mechanistic analogy between the development 

of an embryo and the evolutionary history of a species. It is a thesis that overemphasizes the 

relationship and does not explain the precise mechanisms; however, it highlights the parallels between 

ontogeny and phylogeny. Evolution tends to be conservative; it adds machinery to the community of 

organs by using old but new as outcomes for interactional pressures. Therefore, less complex but 

diverse strategies should be an outcome, and a good optimization scheme should consider it. This 

communication attempts to propose and benefit ideas from ontogeny recapitulates phylogeny, which 

was originally come about in embryology and then later took shape when Charles Darwin proposed 

his theory of evolution. 

 

Hyperparameters of an algorithm are generally tuned to optimize the performance of the algorithm. 

However, this is often done empirically and manual intervention is often needed, making it time-

consuming. By having a phylogenetic view of the hyperparameters, we can benefit by setting ranges or 

the priorities of the models as a function of the underlying strategies present in the population that is 

being analyzed. We make an analogy to ontogeny recapitulates phylogeny and attempt to bring 

insights that can be realized by understanding how evolutionary pressures guide the framing of how 

hyperparameters can be tuned in a particular optimization landscape. These vary from a simple 

strategy such as not doing hyperparameter tuning to designing distributed computations. 

5. Methodologies in Evolutionary Hyperparameter Tuning 

 

The methodologies are typically employed in Population-Based Evolutionary Algorithms employed 

for the process of hyperparameter tuning. The initializations and patient adaptations to the population 

based on evaluations and learning with respect to objectives lead the algorithms to improve the 

effectiveness and efficiency of tuning. The study of populations in a hyperparameter tuning task with 

respect to their mapping to actual evolutionary strategy (mutations, crossovers) is not only an 

important contribution in portrayal of evolutionary HB tuning, it is also found to be inherently evolving 

repeatedly to attain better results. Therefore, the ultimate bottleneck at concluding population-based 

methodologies is typically related to multiple evaluation execution model constraints like processing 

units, contention and synchronization, etc. in parallel processing. 
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In this section, we discuss various methodologies that have been derived or proposed within the 

framework of Evolutionary Optimization. We classify the methodologies pertaining to evolutionary 

hyperparameter (HB) tuning under the categories of Aim-driven methodologies and Population 

initialization and adaptation methodologies. It is important to note here that the methodologies are not 

mutually exclusive and progeny of evolutionary HB tuning often use multiple combinations to address 

sophisticated and non-linear configurations in the hyperparameter space. 

 

The tuning of machine learning algorithms is a time-consuming and often resource-consuming task. 

The simple brute approach of exhaustively searching the hyperparameter space in the grid search 

manner is known not to scale well. Evolutionary Optimization has been recently found to yield superior 

results in terms of both effectiveness and efficiency in hyperparameter tuning and is conceptualized as 

a full-fledged hyperparameter tuning technique. 

5.1. Genetic Algorithms 

In the algorithmic context, individual solutions are abstracted towards a more general "test", where 

valid solutions are evaluated, where every solution can be encoded by a finite alphabet signature, and 

while the GA algorithm performs its work, similarities emerge between the tunnel optimization process 

and the recounts of the animal kingdom. This suggests that hyperparameter "fine" tuning can benefit 

using single- or multi-objective genetic algorithms, as demonstrated through the optimization of a 

neural network by Tadeu et al. using eqs. (1) and (3) or nSGAs, i.e. non-dominated sorting GAs with 

respect to eq. (3). The application to hyperparameter tuning, coupled with other deep learning 

improvements from the biological realm, remains to uncover the power of these up-and-coming search 

heuristic algorithms. 

 

Genetic algorithms, often abbreviated GA, are computational methods inspired by the principles of 

evolution and the profound Darwinian concept that genetic variation serves as the fundamental 

catalyst for the remarkable diversity within species, which, in contemporary scientific discourse, is 

unequivocally recognized as the "cornerstone of all biological knowledge". These ingenious algorithms 

embark on their journey by initiating an initial population composed of potential solutions, referred to 

as candidate individuals. Drawing inspiration from the intricate mechanisms of biological evolution, 

genetic algorithms ingeniously employ a symphony of simple operators, thereby both asexually 

reproducing and sexually recombining superior individuals with one another. This intricate interplay 

of genetic material serves as a faithful embodiment of the biological maxim known as "survival of the 

fittest". Within the magnificent framework of genetic algorithms, two primary biological operators 

reign supreme: recombination, which harmoniously employs a multitude of potential crossover 

strategies, and mutation, a catalytic process typically regarded as an extremely rare and statistically 

improbable event. Through these established means, genetic algorithms intricately navigate the 
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complex terrain of search spaces, optimizing solutions and harnessing the intertwined prowess of 

evolution and computation. 

5.2. Evolutionary Strategies 

In particular, evolution strategies are especially useful in high dimensions because they do not use any 

explicit gradients and thus do not experience the vanishing gradients problem that plagues standard 

backpropagation. High dimensionality is an issue that plagues most supervised learning problems, 

partly because of the vanishing gradient. The lack of gradients, on the other hand, make ESs well-suited 

for unwieldy high dimensional datasets that would crash for even the base model if a gradient-based 

optimization technique was attempted. This advantage of evolution strategies becomes even more 

pronounced when dealing with extremely complex and challenging datasets. These datasets often 

possess a vast number of features and variables, making them highly dimensional. The traditional 

backpropagation method struggles to handle such high-dimensional data due to the problem of 

vanishing gradients. As the number of dimensions increases, the gradients tend to diminish and lose 

their effectiveness in guiding the optimization process. On the contrary, evolution strategies bypass 

this issue altogether by not relying on explicit gradients. Instead, they utilize a collection of candidate 

solutions and iteratively improve them through random mutations and fitness evaluations. This 

characteristic makes them exceptionally well-suited for tackling unwieldy high-dimensional datasets. 

Without the need for gradients, evolution strategies can navigate through the complex landscape of the 

data without encountering the crashing or instability issues that can arise with gradient-based 

approaches. The benefit of using evolution strategies in these scenarios is significant. By evading the 

problems associated with vanishing gradients, these strategies can effectively optimize the base model 

and extract valuable insights from high-dimensional datasets. This is crucial in various fields, such as 

genomics, finance, and image recognition, where the data is inherently multi-dimensional and 

challenging to analyze using traditional approaches. Moreover, the lack of reliance on gradients also 

allows for parallelization and distributed computing, further enhancing the scalability and efficiency 

of evolution strategies. In high-dimensional optimization tasks, where the number of possible solutions 

grows exponentially with the dimensionality, the ability to leverage parallel processing becomes 

paramount. Evolution strategies excel in this regard, as their inherent structure allows for easy parallel 

implementation and efficient exploration of the solution space. In conclusion, evolution strategies 

prove to be an invaluable tool when working with high-dimensional datasets. By sidestepping the 

vanishing gradients problem and offering a gradient-free optimization approach, these strategies open 

up new possibilities for analyzing complex data. Their ability to handle unwieldy dimensions and 

leverage parallelization makes them well-suited for a wide range of applications. As the field of 

machine learning continues to advance and encounter increasingly intricate datasets, evolution 

strategies will undoubtedly play a prominent role in extracting meaningful information and pushing 

the boundaries of what is possible in the realm of high-dimensional data analysis. 
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A very popular and widely used technique known as evolution strategies, which operates in a manner 

similar to genetic algorithms, plays a pivotal role in building up a diverse population of candidate 

solutions to the optimization problem that we are ardently interested in. It falls under the broad 

category of stochastic search algorithms and primarily focuses on parameter initialization, disregarding 

intricate details such as the gradient or its approximation. Like all the other stochastic search algorithms 

discussed extensively in this informative article, evolution strategies are completely unsupervised, 

making them suitable for handling large populations and conducting an expansive number of 

simulations. This algorithm functions by initializing a population of potential solutions, diligently 

evaluating their fitness, sampling from a well-defined distribution, and iteratively returning to assess 

the fitness of each newly sampled solution. The true essence of "evolution" starts to manifest itself with 

the implementation of solution initialization and the sampling procedure. It is unequivocally clear that 

evolution strategies solely rely on non-derivative-based methods, rendering them particularly 

applicable and widely embraced in the realm of unseen, high-dimensional datasets. Consequently, 

these strategies serve as a timely and indispensable partner to any standard algorithm that aspires to 

effectively scale and conquer the challenges associated with handling such intricate and complex 

datasets. 

5.3. Differential Evolution 

Using a very high value of CR slows down the algorithm because it changes an element in a different 

direction regardless of the change in mutation. Optimal DE settings involve exploration of a wide array 

of problem-specific data sets and function types. However, make use of a global data set to analyze the 

statistical implications of the algorithm, which strengthens transferability lookahead. 

 

Differential Evolution (DE) is a population-based global optimization algorithm developed by Storn 

and Price. DE operates by conducting vector subtractions of elements of the population and pairwise 

element differences. Then these difference vectors are added to another element in the population. 

From the trial vector, we decide if the trial vector is preferable to replace the parent or not. DE tuning 

requires selection of the best strategy (which is, selection of the sub-vector set that best expands the 

search to better results). The control parameters are mutation parameter F, which determines the 

fraction of the donor vector that contributes to the difference vector, and the scaling parameter CR, 

which determines the amount of the difference vector that replaces the target vector. The diversification 

parameter has a large impact on the algorithm's performance, and only one setting applies to any 

specific problem within some tolerance. However, consequently, almost all of the strength works in 

general. This requires employing the parameter to adjust accordingly. 
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6. Case Studies and Applications 

 

To obtain the largest model possible, suppose we embark on an extraordinary journey through the 

captivating world of Mandlebrot's zoo sequence, a whimsical collection of mathematical wonders. In 

this enchanting expedition, we continually augment our model by adding neurons, while 

harmoniously training it with the carefully curated hyperparameters derived from the mystical zoo 

sequence. Immersed in the realm of optimization, we manifest various algorithms, each dancing with 

unique fervor, as they endeavor to uncover the most exquisite solution. With a symphony of 

computational genius, we orchestrate a grand performance, executing these algorithms in abundance. 

Our discerning eye carefully scrutinizes their resulting symphonies of data, seeking the answer that 

resonates with the highest melodic brilliance. In this grand spectacle, we find ourselves embracing the 

audacity of our actions, fearlessly embracing the most arduous and financially extravagant endeavor. 

For within our hearts, we know that in pursuing this intricate, yet glorious heuristic, we are venturing 

into uncharted terrain. No longer compelled to engage in laborious evaluation steps, we stand resolute 

in our conviction that this extravagant exploration is the key that unlocks the door to untold treasures. 

With unrivaled determination, we cast aside the need to cultivate new algorithms for preliminary 

scrutiny. Instead, we boldly trust in the limitless potential of the model itself, bestowing upon it the 

honor of unfettered testing. For within its boundless capacity lies the whisper of hidden greatness, 

awaiting our embrace as we set forth on this audacious path. 

 

We now consider how different concepts and theories within biology naturally produce different 

hyperparameter values. In Section 6.1, we demonstrate how to estimate very large models without any 

careful tuning. We then show in Section 6.2 the mechanisms guiding the sorting of classification label 

selections, in Layer 1 in a convolutional neural network by incorporating ideas from evolution. 

Although there are in principal two cost functions, A(G(x_train)) and Q1(G(x_train)), to be minimised 

in order to train the L1 layer to minimize the cost function Q2(F◦D(x_train)), the cost function in effect 

has only one variable to be minimized. In Section 6.3 we also extend our insights to autoML systems. 

6.1. Optimizing Neural Network Architectures 

To find the most suitable design for a network architecture, we commonly rely on at least three types 

of methods: informed practitioners guide architectural choices, grid searching, and meta-learning. The 

first two methods, relying on a human expert, are slow and not well scalable with network architecture 

size, dataset size, or task complexity. Such manual and grid-searched architectures are largely gaining 

their maturity through meta-learning tactics leading to the discovery of specific types of normalization 

layers, activation units, types of parameter initializations, and connections between layers. However, 

manual, grid-search, and meta-learned network architectures are suspected to be suboptimal as these 

methods may not be exhaustive or tuned on shared, large-scale evaluations. A possibly more 
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exhaustive and scalable method when designing neural networks is the application of evolutionary or 

generative algorithms to optimize their architectures. 

 

The training of large neural networks remains an onerous task in terms of computational requirements. 

Increasing the size of neural networks has been shown to be beneficial but comes at a steep 

computational cost. Computational efficiency is therefore an important quality to have in a machine 

learning model. In order to reduce the number of parameters in large networks and simultaneously 

make the most of these few parameters, a well-rounded network architecture is desired. It is not only 

the number of hidden units in the layers of a network that is important to tune but also other 

architectural design choices such as the depth of the network (number of layers), the connections 

between layers (fully connected, convolutional, recurrent, residual, etc.) and the types of normalization 

we apply at each layer. 

6.2. Enhancing Model Generalization 

We significantly increased the ability of our students to both relate evolutionary principles to model 

performance and performance enhancement via hyperparameter tuning while increasing the active 

learning aspects in a 'flipped classroom'-like reduction in lecture time. Applying this simple exercise in 

the classroom should give students a deeper understanding of hyperparameter optimization and better 

prepare them to deal with increasingly complex data, modeling tasks, and the opportunities and pitfalls 

of machine learning and AI. 

 

Student understanding of evolutionary principles and the role of hyperparameter tuning as an 

explorative force driving model performance was enhanced through the use of a role-playing exercise 

in which students took on the identity of the model and explored their phenotypic range via computer 

simulation. After the exercise, students gained confidence in their explanation of the concept and were 

able to relate the exercise to the computational algorithm, demonstrating both a deeper understanding 

and enjoyment of the concept. Overall, increased confidence in the importance of hyperparameter 

tuning as well as the abatement of intimidation towards unfamiliar optimizers, coupled with increased 

knowledge of optimization tools that are essential for modeling success, will give students a broader 

vocabulary with which to describe the behavior of complex models. 

7. Challenges and Future Directions 

 

Only a couple of 5-layered networks are available for analysis that study the optimization history. But, 

there is an extremely large number of 50-layered fully connected networks whose optimization and 

history have not been studied till date. The optimization metric, as alluded earlier, related to the virtual 
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hyperparameter optimization is centered around certain regions and is typically non-Gaussian. Future 

study will dwell on comparing the inequalities that emerge from this type of optimization to see if this 

study has evolutionary significance. 

 

When the optimization is performed on the early layers of the neural network, the optimization history 

appears in piecemeal unequal bits that range from as low as 10 to a few scores, predominantly less than 

30. Plunging into these small bits showed that a number of them are very irregular and correlative 

behavior disappears. In such a reduction of data sample, some common features that emerge in the 

iterations are 1) improved learning, 2) reduction in the loss value, 3) speedier convergence, 4) robust 

and predictable outcome. 

 

We studied the virtual hyperparameter optimization as a scale-invariant optimization problem. This 

insight is unexpected, but it paved the way to explore the history of some of the underlying neural 

networks. It is interesting that the salient information comes from the very early layers of the network. 

This piqued our interest to examine even earlier layers of the network to see if it helps understand the 

evolutionary significance of the optimization history of present-day networking tools. 

7.1. Ethical Considerations 

The authors affirm that they do not have any conflicting interests that may influence the integrity or 

impartiality of this work. Furthermore, it is important to note that the data and materials required to 

replicate or verify the findings of this study are accessible and available upon request from the authors. 

We understand the significance of transparency and openness in scientific research. Thus, we are 

committed to providing any necessary information and resources to ensure the reproducibility and 

reliability of our study. Please feel free to reach out to us for any additional details or inquiries regarding 

the data and materials utilized in this research. Our goal is to promote a collaborative and accountable 

environment where scientific knowledge can be shared and scrutinized for the betterment of the 

scientific community and society as a whole. 

 

The content in this manuscript is of a theoretical nature, hence the paper has not required IRB approval. 

In addition, we use only simulated data for our study and there are no human or animal subjects 

involved in the study. The nature of our research precludes any discussions of privacy and 

confidentiality as no human subject data is used. Since functional signatures learning in immune 

repertoire is far from mainstream biomedical settings, we do not deal with any clinical applications. 

We do not foresee any ethical issues that may arise due to the publication of our study. Nevertheless, 

we provide common disclosure statements about the work. 
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7.2. Integration with Other Optimization Techniques 

The marriage of HR pretuning and other optimization techniques also doubles our exposure to the 

evolutionary training process. Each offspring trained using HR data in specialized perturbative 

datasets, such as Add-A-Digit and Kervad, takes an additional virtual megabytes of training – 

presumably the equivalent of hundreds or even thousands of real updates to the optimistic model. In 

principle, the weight thresholds used to reject and thereby evade adversarial loads or noisy 

perturbations also reinforce stable, susceptible training. While it has been previously shown that HR 

reinforcement tuning narrows the typical range of decay rates to more stable values, such reinforcement 

typically leverages test-time classification errors. 

 

From an executional perspective, HR pretuning further capitalizes on conventional tuning strategies. 

As mentioned in Section 5, data transformation and rescaling have long been employed in auto-tuning 

strategies, particularly for hyperparameters such as learning rates. However, the ranges of 

transformations tend to be very small, typically within one order of magnitude up or down. With HR 

pretuning, we may more aggressively band the learning rate in the search space, with less worry that 

the network will encounter convergence issues. Similarly, HR pretuning hedges against critical 

regularization errors by automatically conceding progressively smaller amounts of regularization. 

Furthermore, by ensuring comparability, our cost normalization formalizes a common best practice, 

improving the reproducibility and reliability of search results across tuning runs. 

8. Conclusion 

 

In this research article, we delve into the profound implications of hyperparameter tuning within the 

realm of neural network learning. Our focus is primarily on the intriguing phenomenon known as the 

double descent curve and its intricate relationship with a diverse range of damping techniques. By 

closely examining the evolutionary connection between double descent and the constraints associated 

with early phylogenetic trajectories, we aim to shed light on the circumstances under which various 

damping techniques operate effectively and, in a more comprehensive sense, the underlying reasons 

that specific hyperparameters necessitate meticulous tuning. The outcomes of our extensive study 

provide compelling evidence for the consistent application of the evolutionary metaphor, which brings 

forth substantial predictive insights. By addressing queries regarding the optimal timing and rationale 

behind the functionality of damping techniques, future researchers will be better equipped to navigate 

the labyrinthine landscape of architectural development and hyperparameter selection. Consequently, 

this newfound understanding will empower human investigators, equipping them with an arsenal of 

additional tools and refined intuition necessary for propelling the construction of exceedingly efficient 

deep learning solutions to new heights. 
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Evolutionary principles have long been wielded as a source of profound insight and inspiration for the 

effective and efficient design of complex artificial systems. Within the realm of neural network learning, 

the enlightening realization that the process of evolving networks can significantly contribute to the 

optimal initialization of weights has resulted in monumental breakthroughs in effectively training and 

optimizing large-scale networks. Expanding upon this notion, it becomes evident that delving deeper 

into the understanding of how and why various types of regularization techniques operate to facilitate 

superior generalization in the domain of deep learning can yield invaluable insights, thus leading to 

the development of more potent network architectures and astute selection of hyperparameters. 

Despite considerable progress, it must be acknowledged that, in combination, our current knowledge 

of the functioning of certain damping techniques remains relatively limited, and furthermore, we have 

yet to unravel the underlying evolutionary forces that govern and drive successful hyperparameter 

tuning processes. 

8.1. Summary of Key Findings 

EHT should be evaluated on a dataset-level and not on a global level. Perhaps the most important 

conclusion is that the results of our evaluation on per-instance EHT parallel our previous work when 

it is evaluated at dataset-level. Evolving the results obtained by individuals with their best-end 

algorithms gives accuracies which generally match EHT. However, the best-end algorithms should be, 

without any previous knowledge, very difficult to obtain. In other cases, the tuning is essential to be 

able to evolve the algorithm ranking. Even more in that the second-best algorithm is too far from the 

score of the winning algorithm. 

 

In this chapter, we analyze the effectiveness of evolutionary hyperparameter tuning (EHT) on a per-

instance basis, rather than in pooled rankings as it has been done in previous studies. Each instance 

was assigned only one possible winning algorithm per dataset, and this value was obtained using EHT 

rankings. We observed important differences in tuning on each dataset. In several cases, no ability at 

all in EHT was observed in obtaining the best classifiers. On the other hand, for the most problematic 

datasets, interesting results can be found. 

8.2. Implications for Machine Learning Research 

Despite the inchoate nature of our ideas, we still believe it is worth speculating about potential 

implications of the biological insights described earlier for the field. These ideas emerge from the 

symbiotic relationship between computer software and hardware, and particularly from realization of 

the potential of evolutionary algorithms to automate the task of hyperparameter tuning, allowing large-

scale populations of neurons to bootstrap from their 'genetic' ground state to acquire sophisticated 

belief structures adaptable to local environments. 
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In this section, we consider some potential implications of the biological insights discussed in this 

chapter for the field of ML itself. While it is possible for ML to remain a purely engineering discipline, 

as it still mostly appears to be today, it may benefit by engaging more directly with evolutionary ideas. 

Because evolution has much longer time scales and funnel-like optimization landscapes, as described 

in the Introduction, it potentially holds the key to creating artificial algorithms that are more scalable, 

more sample efficient, and more principled. 
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