
Australian Journal of Machine Learning Research & Applications
By Sydney Academics 570

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

Resource Management Optimization in Kubernetes for High-Density
EKS Clusters

Babulal Shaik, Cloud Solutions Architect at Amazon Web Services, USA

Jayaram Immaneni, SRE Lead at JP Morgan Chase, USA

Abstract:

Optimizing resource management in Kubernetes has become critical as cloud-native
technologies, particularly those running on platforms like Amazon Web Services (AWS) with
Elastic Kubernetes Service (EKS), evolve to handle increasingly dense and demanding
workloads. Modern applications are often dynamic and resource-heavy, requiring careful
management to maintain performance, scalability, and cost-effectiveness. In high-density
environments, where workloads are packed tightly together, the need for efficient resource
allocation becomes even more pressing. This article delves into several approaches for
optimizing resource management within Kubernetes clusters running on EKS, emphasizing
high-density use cases. It examines essential concepts like resource allocation strategies, auto-
scaling techniques, and the importance of robust monitoring tools that provide real-time
insights into cluster performance. By effectively balancing resource usage and scale clusters,
businesses can ensure that their applications run smoothly while minimizing resource waste
and maintaining cost efficiency. The article also discusses best practices for configuring and
fine-tuning workloads to maximize resource utilization, including container resource limits
and requests, pod affinity, & scheduling strategies. Furthermore, it highlights how
Kubernetes' inherent features, such as namespaces and resource quotas, can be leveraged to
ensure that resources are allocated fairly across workloads, preventing bottlenecks and
optimizing performance. Focusing on operational efficiency, the content guides how to reduce
overhead while maintaining the agility and flexibility that Kubernetes is known for, making
it easier for organizations to manage large-scale environments without compromising
performance or operational complexity. Through careful planning and the right tools,
organizations can balance resource utilization and cost, enabling high-density workloads to
run efficiently in EKS clusters.

Keywords: Kubernetes, EKS, resource management, high-density workloads, cloud-native,
scaling, resource allocation, monitoring, performance optimization, AWS, container
orchestration, autoscaling, pod resource limits, workload balancing, cost optimization, node
provisioning, cluster autoscaling, Kubernetes namespaces, resource quotas, Prometheus,
Grafana, AWS CloudWatch, real-time monitoring, resource utilization, custom metrics,
infrastructure efficiency, application performance, container efficiency, cloud infrastructure,

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 571

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

workload distribution, high availability, resource contention, system reliability, Kubernetes
scheduling, performance tuning.

1. Introduction

Kubernetes, a powerful and open-source container orchestration platform, has become the
cornerstone of modern infrastructure management. It enables developers and operations
teams to automate the deployment, scaling, and management of containerized applications.
As organizations increasingly adopt cloud-native architectures, Kubernetes has risen to
prominence due to its ability to efficiently manage complex, large-scale applications across
clusters. However, as Kubernetes environments scale, especially in cloud platforms like AWS
through Elastic Kubernetes Service (EKS), ensuring effective resource management becomes
a significant challenge.

In high-density Kubernetes clusters, where many workloads coexist on a single platform,
resource management plays a critical role in maintaining optimal application performance. In
these environments, it’s not just about deploying applications but doing so in a way that
maximizes infrastructure efficiency while ensuring that each workload gets the resources it
needs to function smoothly. Failure to properly manage these resources can lead to a range of
issues, such as underutilized resources, over-provisioning, and resource contention, all of
which can negatively affect both performance and costs.

1.1 Challenges in Resource Management for High-Density EKS Clusters

Managing resources in a high-density EKS cluster can be a daunting task. With multiple
applications and microservices running on the same infrastructure, efficient resource
allocation is key. When resources like CPU, memory, & storage are allocated improperly, the
performance of some applications may degrade, while others may remain underutilized.
High-density clusters tend to expose inefficiencies faster, often resulting in wasted resources
or poor application performance.

One major challenge is the complexity of predicting resource demands. Traditional resource
allocation strategies are often not sufficient for cloud-native applications, where workloads
can be dynamic and fluctuate over time. In such environments, accurately sizing resources for
each workload becomes crucial to avoid both underutilization and over-provisioning.
Without proper monitoring and scaling mechanisms, this can quickly lead to an imbalance
that affects the overall performance of the cluster.

1.2 Over-Provisioning vs. Under-Provisioning in EKS Clusters

Over-provisioning and under-provisioning are two common pitfalls when it comes to
managing resources in Kubernetes environments. Over-provisioning occurs when more
resources are allocated to workloads than they actually need, which can result in idle capacity.
This not only wastes cloud resources but also incurs unnecessary operational costs. On the

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 572

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

other hand, under-provisioning leads to resource starvation, where workloads are unable to
perform at optimal levels due to insufficient resources.

Both scenarios are detrimental to high-density clusters. Over-provisioning reduces the overall
efficiency of resource usage, while under-provisioning can lead to application slowdowns,
crashes, or errors that negatively impact end-user experiences. Achieving the right balance
between these two extremes is essential for cost-effective, high-performance Kubernetes
clusters.

1.3 Importance of Efficient Resource Scaling & Monitoring

Efficient resource scaling is another critical aspect of optimizing resource management in
high-density EKS clusters. Kubernetes offers features like Horizontal Pod Autoscaling (HPA)
and Cluster Autoscaler to automatically adjust the resources based on demand. However,
relying solely on autoscaling without sufficient monitoring can result in issues such as
delayed response to demand changes or inefficient scaling decisions.

Effective monitoring is key to ensuring that scaling decisions are made in real-time, based on
accurate, up-to-date resource utilization data. By leveraging tools like Prometheus and
Grafana, cluster administrators can gain deep insights into how resources are being consumed
& identify potential bottlenecks before they impact application performance. With proper
monitoring and timely scaling, workloads can be adjusted dynamically to match the needs of
the applications, leading to better resource optimization and improved cluster performance.

2. Understanding the Resource Management Landscape in Kubernetes

Kubernetes is a powerful container orchestration platform that allows organizations to
deploy, manage, and scale applications in containerized environments. In high-density EKS
(Elastic Kubernetes Service) clusters, optimizing resource management becomes crucial to
ensure efficient utilization, minimize cost, and guarantee high performance. The resource
management landscape in Kubernetes involves various components and strategies for
handling CPU, memory, storage, and other system resources effectively. In this section, we
will explore the different facets of resource management in Kubernetes, focusing on key areas
that affect performance and efficiency in high-density EKS clusters.

2.1 Resource Requests & Limits

Every container runs within a pod, and each container can be configured with resource
requests and limits. These settings are vital for ensuring that containers receive the necessary
resources to function optimally without over-consuming the available capacity in a cluster.

2.1.1 Resource Requests

Resource requests represent the minimum resources that a container needs to run. When a
pod is scheduled onto a node, Kubernetes uses the resource request as a basis to determine
whether the node has enough available resources. If the requested resources are unavailable
on a node, the pod will not be scheduled there. By setting appropriate resource requests, you

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 573

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

can ensure that the container has the necessary resources to start and function under load. For
example, you can specify CPU and memory requests for each container in a pod.

Optimizing resource requests is key for high-density clusters where resources are limited.
Setting requests too low can lead to resource starvation, while setting them too high can lead
to inefficient resource utilization. In a high-density EKS environment, careful tuning of these
values is essential to balance demand and capacity.

2.1.2 Resource Limits

Resource limits define the maximum resources a container can consume. Once a container
exceeds its defined limit, Kubernetes will throttle or terminate it, depending on the resource
type. Setting resource limits helps prevent a single container from consuming excessive
resources, which could impact other containers running on the same node.

Setting appropriate resource limits is especially important because many containers may be
running on the same node. If one container exceeds its resource limit, it could affect the
performance of other containers, leading to a ripple effect across the entire cluster. Kubernetes
will enforce these limits strictly, ensuring that no container can use more resources than it is
allocated.

2.2 Pod & Node Scheduling

Scheduling in Kubernetes is the process by which the system assigns pods to specific nodes
within a cluster. Resource management plays a key role in scheduling because the scheduler
must ensure that the nodes in the cluster have the required resources to accommodate the
pods being scheduled. The process is influenced by several factors, including resource
requests, resource limits, and node constraints.

2.2.1 Taints & Tolerations

Taints and tolerations are another pair of features used in Kubernetes to influence scheduling
decisions. Taints allow nodes to repel certain pods unless the pods tolerate the taint. This can
be particularly useful in high-density clusters where certain nodes may have specialized
resources or workloads that should not be shared with other pods.

You might apply a taint to nodes that have GPU resources, ensuring that only pods that
require GPUs are scheduled onto those nodes. Tolerations are then used to specify which pods
can tolerate the taint and be scheduled on the tainted nodes.

2.2.2 Pod Affinity & Anti-Affinity

Pod affinity & anti-affinity are Kubernetes features that influence how pods are scheduled
onto nodes relative to other pods. Pod affinity allows you to specify rules about how pods
should be placed together, while anti-affinity ensures that certain pods are not placed together
on the same node.

Pod affinity could be used to ensure that high-priority workloads are scheduled on nodes
with sufficient resources, while anti-affinity might be used to avoid placing resource-heavy

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 574

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

pods on the same node. These features can help improve resource efficiency by preventing
resource contention between pods and ensuring that high-density clusters remain balanced.

2.2.3 Resource Requests & Limits in Scheduling

As mentioned earlier, the resource requests and limits of a pod play a significant role in the
scheduling decision. Kubernetes uses these values to determine whether a node can
accommodate a pod and whether the pod is likely to perform well once it is scheduled. In
high-density clusters, this is even more important because resources are limited, and the
scheduler must ensure that pods are distributed evenly across the cluster to prevent
overloading individual nodes.

The scheduler may need to make compromises between resource efficiency and workload
performance, which makes setting accurate resource requests and limits critical.

2.3 Horizontal Pod Autoscaling

In Kubernetes, horizontal pod autoscaling (HPA) is a mechanism that automatically adjusts
the number of pod replicas in response to changes in resource utilization. HPA is especially
important in high-density clusters where workloads can fluctuate in demand, and resources
need to be allocated dynamically.

2.3.1 Autoscaling & Cost Efficiency

One of the main benefits of horizontal pod autoscaling in high-density clusters is cost
efficiency. By dynamically adjusting the number of pods running based on demand,
Kubernetes ensures that only the necessary resources are being used at any given time. This
reduces waste and helps organizations avoid over-provisioning resources that would
otherwise go unused.

Autoscaling must be carefully monitored and tuned. If the scaling criteria are too aggressive
or too conservative, the system might scale pods too often, causing unnecessary resource
usage and cost spikes. Fine-tuning autoscaling policies in high-density clusters is essential to
achieve a balance between performance and cost efficiency.

2.3.2 Metrics Server

The metrics server collects resource usage data (such as CPU and memory usage) from each
node and pod in the cluster. This data is used by the HPA to determine when to scale pods
up or down based on resource utilization. The metrics server enables HPA to monitor the
health and performance of pods in real-time, making scaling decisions more efficient.

For high-density EKS clusters, ensuring that the metrics server is properly configured and
integrated with HPA is critical for maintaining optimal resource management. Without
accurate data, autoscaling can become unreliable, leading to under-provisioned or over-
provisioned workloads.

2.4 Resource Requests & Limits for Efficient Cluster Utilization

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 575

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

The effective management of resource requests and limits is critical for ensuring that a
Kubernetes cluster runs efficiently, particularly in high-density environments like EKS. By
setting appropriate resource requests and limits, pod scheduling becomes more efficient, and
the overall cluster utilization improves.

Resource requests provide the scheduler with a clear understanding of the resources a pod
needs to function, while limits ensure that no pod consumes more resources than it should.
Properly defining these values helps optimize node utilization, ensuring that each node runs
at an optimal capacity without overloading. Furthermore, efficient resource management can
prevent bottlenecks and downtime, ensuring that high-density clusters remain performant
even as workloads increase.

Effective resource management involves continual monitoring and adjustment. Kubernetes
provides several tools, such as the Horizontal Pod Autoscaler, to help maintain resource
efficiency over time. The key to success in high-density environments is finding the right
balance between resource allocation, workload distribution, and cluster scaling. By leveraging
the full potential of Kubernetes' resource management features, organizations can achieve
high performance and efficiency in their EKS clusters while keeping costs in check.

3. Challenges of High-Density EKS Clusters

High-density Amazon Elastic Kubernetes Service (EKS) clusters refer to environments where
numerous containers are running simultaneously, often across many nodes. These clusters are
a popular choice for organizations scaling their cloud-native applications due to the flexibility
and power they provide. However, while EKS offers a robust and scalable solution, managing
high-density clusters presents several challenges. From resource constraints to effective
workload distribution, each challenge requires careful consideration and optimization to
ensure smooth operations and resource utilization.

3.1 Resource Allocation & Utilization

Efficient resource management in high-density clusters is essential for maintaining
performance and cost-effectiveness. With a large number of containers packed onto a smaller
number of nodes, it becomes increasingly difficult to manage resource allocation efficiently.
The following are some critical issues within this challenge.

3.1.1 Resource Overprovisioning

Resource overprovisioning is one of the most common issues in high-density clusters. In an
attempt to ensure that each workload has enough resources to run smoothly, administrators
often allocate more CPU & memory resources than the containers require. Overprovisioning
can lead to significant wastage, where resources are sitting idle but are still being counted
against the available capacity.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 576

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

This becomes even more problematic because clusters are packed with multiple workloads.
The challenge lies in predicting the exact resource needs of a container and allocating
accordingly, without going overboard. A better approach is to use Kubernetes resource
requests and limits effectively, setting both for CPU and memory. Tools like the Kubernetes
Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA) can help monitor usage
and adjust the resource allocation dynamically.

3.1.2 Scaling Challenges

The challenge of scaling containers and nodes dynamically is another key area of concern.
While Kubernetes can automatically scale workloads using the Horizontal Pod Autoscaler,
the sheer density of the environment means scaling events can have larger-than-expected
impacts. Scaling up or down too aggressively can lead to instability, with workloads not being
able to reach their desired state in time.

To tackle this issue, it’s important to monitor the scaling behavior closely and adjust
configurations such as the scaling threshold and cooldown periods. Additionally, the capacity
of underlying EC2 instances needs to be carefully considered. Auto-scaling clusters should be
managed with precise monitoring and adjustment to ensure that the scaling operations meet
the dynamic demand of a high-density environment.

3.1.3 Resource Contention

As the number of workloads in a high-density EKS cluster increases, resource contention
becomes a critical concern. Contention happens when multiple containers try to use the same
resource, such as CPU or memory, at the same time. If the cluster is not sized appropriately
or resource allocation isn’t fine-tuned, it can result in resource starvation, where some
workloads are unable to function optimally.

To mitigate resource contention, it’s vital to configure Kubernetes with appropriate priorities
and quality of service (QoS) levels for different workloads. The use of Kubernetes' resource
limits and requests can help balance resource demand. Additionally, using namespaces to
segment workloads and limit resource usage within those namespaces is an effective strategy
in high-density clusters.

3.2 Node & Pod Scheduling

Effective scheduling of pods to nodes is crucial in high-density EKS clusters. The challenge
lies in ensuring that workloads are evenly distributed across nodes without overloading any
particular instance, while also maintaining high availability and performance.

3.2.1 Scheduling Overhead

Scheduling overhead occurs when Kubernetes spends too much time and resources deciding
where to place pods. In a high-density environment, this overhead becomes more pronounced
because of the increased number of pods and nodes involved. If the scheduler is unable to
make quick and effective decisions, it can lead to delays in pod placement and ultimately
impact the performance of applications.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 577

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

Consider using the Kubernetes scheduler’s affinity and anti-affinity rules, which help ensure
that pods are distributed appropriately across the cluster. Also, implementing custom
scheduling policies can make the scheduling process more efficient and tailored to your
specific needs.

3.2.2 Dynamic Node Provisioning

Dynamic node provisioning, such as using Amazon EC2 Auto Scaling with EKS, allows the
cluster to automatically add or remove nodes based on demand. While this can help mitigate
some of the challenges of high-density environments, it also introduces complexities related
to scaling. The main challenge lies in determining the ideal node type and size for the
workload at hand.

Proper configuration of auto-scaling groups, monitoring tools, and scaling policies is essential
to ensure that nodes are provisioned when needed. Without adequate testing and validation,
dynamic node provisioning could lead to performance degradation or insufficient node
resources during high-demand periods.

3.2.3 Node Affinity & Taints

Node affinity and taints are mechanisms within Kubernetes that help ensure that pods are
scheduled to appropriate nodes. While these features are helpful in avoiding resource
contention, misconfiguration can lead to pods not being scheduled or being placed on nodes
that are already under heavy load.

When dealing with high-density clusters, node affinity should be used with caution. It’s
important to strike a balance between flexibility and specificity when setting node affinities to
avoid situations where pods become unschedulable. Using taints and tolerations can help
ensure that only specific types of pods are scheduled on specific nodes, preventing issues like
resource exhaustion on particular nodes.

3.3 Cluster Monitoring & Observability

Comprehensive monitoring & observability are essential. With so many workloads and
complex interactions within the cluster, gaining insights into resource usage, pod health, &
cluster performance becomes a significant challenge.

3.3.1 Troubleshooting Bottlenecks

Another significant challenge in high-density clusters is identifying and troubleshooting
bottlenecks in the system. With so many pods and nodes, locating the root cause of a
performance issue can take time. Whether it's a resource contention problem, a network
latency issue, or an unresponsive pod, diagnosing problems requires comprehensive
observability and tracing tools.

Distributed tracing tools like Jaeger and OpenTelemetry, combined with log aggregation
platforms like ELK (Elasticsearch, Logstash, and Kibana), can assist in providing detailed
insights into cluster performance. These tools enable administrators to track requests as they

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 578

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

move through various components, helping pinpoint where bottlenecks occur and resolve
them faster.

3.3.2 Resource Consumption Visibility

Resource consumption is often not evenly distributed across nodes. Identifying which
workloads are consuming disproportionate amounts of resources and understanding the
underlying causes can be challenging without proper observability tools.

Prometheus and Grafana are commonly used tools to monitor and visualize metrics in
Kubernetes clusters. These tools, along with others such as AWS CloudWatch, can help
administrators gain visibility into resource consumption patterns. Regular audits and alerting
mechanisms can ensure that resource limits are adhered to, and unnecessary consumption is
identified promptly.

3.4 Cost Management

High-density EKS clusters can lead to inflated costs due to inefficient resource allocation,
unoptimized scaling, and overprovisioning. Managing costs in a cloud-native environment
requires careful tracking and optimization to avoid waste.

One of the most significant contributors to high costs is underutilization of resources. In high-
density clusters, it's crucial to ensure that resources are used effectively. Leveraging tools like
Kubernetes Resource Metrics Server, AWS Cost Explorer, and Kubernetes Cost Allocation can
help track and identify underutilized resources. Adjusting scaling policies, optimizing
instance types, and implementing autoscaling best practices are essential for maintaining cost
efficiency.

4. Strategies for Optimizing Resource Management in High-Density EKS Clusters

Efficient resource management in Kubernetes is crucial, especially in high-density Amazon
Elastic Kubernetes Service (EKS) clusters, where multiple workloads share the same
infrastructure. High-density environments present unique challenges such as resource
contention, inefficient pod scheduling, and the overall complexity of managing workloads at
scale. Below, we explore strategies that can help optimize resource management and improve
the performance of high-density EKS clusters.

4.1 Resource Requests & Limits: Defining & Controlling Usage

One of the first steps in optimizing resource management in Kubernetes is to properly define
the resource requests and limits for each container. In a high-density cluster, resource
allocation is critical because it prevents any single pod from consuming all available CPU and
memory, leading to a performance degradation of other pods.

4.1.1 Defining Resource Requests

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 579

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

Resource requests are the minimum amount of CPU and memory that a container requires.
By setting accurate requests, Kubernetes can schedule pods more efficiently, ensuring that the
node has enough resources to run the container. In a high-density EKS cluster, the scheduler
considers resource requests when placing pods, ensuring that a pod’s minimum resource
requirements are met.

When defining requests, consider the typical resource usage of the application under normal
operation. Avoid setting the resource requests too high, as it might waste available resources
on under-utilized nodes. Conversely, setting requests too low may cause the pod to be
throttled or evicted under heavy load.

4.1.2 Defining Resource Limits

Resource limits, on the other hand, define the maximum amount of resources that a container
can consume. Limits help prevent a container from over-consuming resources and impacting
other containers. It is especially important in a high-density cluster, where many workloads
are competing for resources.

Setting appropriate limits requires monitoring and understanding the resource usage patterns
of applications. If an application occasionally spikes in CPU usage but is relatively stable
otherwise, setting a higher CPU limit with a reasonable request value allows the pod to burst
without overloading the node.

4.2 Pod Scheduling & Affinity: Smart Placement for Optimal Resource Utilization

Efficient pod scheduling is critical for optimizing resource usage in high-density EKS clusters.
By using Kubernetes’ scheduling policies, administrators can control how and where pods are
placed within the cluster. This ensures that resources are utilized optimally, and workload
isolation is maintained.

4.2.1 Pod Affinity & Anti-Affinity

Pod affinity allows you to schedule pods to run on nodes that already have a certain set of
pods. Anti-affinity, on the other hand, ensures that certain pods are not scheduled on the same
node to prevent resource contention. Both affinity and anti-affinity rules can be configured to
align workloads in ways that optimize resource usage and maintain high availability.

Pods that require high CPU usage might be placed on nodes with more powerful CPUs, while
pods that are more memory-intensive might be placed on nodes with larger memory
capacities. Anti-affinity can also help distribute workloads across different availability zones
to reduce the risk of localized resource failure.

4.2.2 Taints & Tolerations

Taints & tolerations provide a powerful mechanism for controlling pod placement and
ensuring that certain nodes are reserved for specific workloads. A node can be tainted to
prevent any pod from being scheduled on it unless the pod has a matching tolerance.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 580

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

This can help isolate critical workloads, ensuring they are not inadvertently scheduled on
nodes with competing workloads. For example, a node with specialized hardware might be
tainted to allow only pods requiring that specific hardware resource to be scheduled on it.

4.2.3 Vertical Pod Autoscaling (VPA)

Vertical Pod Autoscaling automatically adjusts the CPU and memory requests for pods based
on observed usage. This can be particularly useful in high-density clusters, where resource
demands can fluctuate significantly. The VPA adjusts resources for under-provisioned pods
and ensures that the right amount of resources are allocated to each pod, improving overall
utilization.

VPA can prevent underutilized pods from consuming more resources than necessary, and it
ensures that resource-constrained pods are provided with the resources they need to perform
optimally.

4.3 Horizontal Pod Autoscaling: Dynamically Scaling Applications

Horizontal Pod Autoscaling (HPA) is an essential tool in Kubernetes that automatically
adjusts the number of pods in a deployment based on resource usage. This allows applications
to scale in or out as demand fluctuates, ensuring that resource allocation remains efficient in
high-density environments.

4.3.1 Setting Up HPA Based on Custom Metrics

HPA typically scales pods based on CPU and memory usage, but it can also scale based on
custom metrics such as request latency, queue length, or external API usage. In high-density
EKS clusters, using custom metrics provides better control over resource management & helps
ensure that scaling decisions are more reflective of the actual demand.

Custom metrics enable more precise autoscaling, ensuring that pods are scaled to meet the
specific needs of the application rather than relying solely on CPU and memory, which may
not always be the best indicators of workload demand.

4.3.2 Avoiding Over-Scaling & Resource Waste

Over-scaling can lead to wasted resources, particularly in high-density clusters. Kubernetes
may inadvertently scale applications to higher numbers of pods than necessary, leading to
resource underutilization on nodes. To avoid this, administrators should define resource
requests and limits carefully and adjust HPA thresholds to match actual application behavior.

Additionally, consider using tools like the Kubernetes Cluster Autoscaler, which works
alongside HPA to adjust node capacity based on the number of pods that need to be
scheduled. This ensures that scaling decisions are efficient, and resources are provisioned
appropriately across the entire cluster.

4.4 Node Resource Management: Optimizing Node Utilization

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 581

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

Efficient node resource management is essential for maintaining high performance and low
cost in a high-density EKS cluster. Kubernetes provides several mechanisms for managing
node resources, including the Cluster Autoscaler, node pools, and resource quotas.

4.4.1 Cluster Autoscaler

The Cluster Autoscaler automatically adjusts the number of nodes in a cluster based on the
demands of the scheduled pods. When pods cannot be scheduled due to resource constraints,
the Cluster Autoscaler will add nodes to the cluster. Conversely, it will remove under-utilized
nodes when resources are no longer needed.

In high-density EKS clusters, the Cluster Autoscaler is vital for ensuring that the cluster
remains agile & responsive to changing resource demands. It prevents wasted resources by
ensuring that only the necessary nodes are running and that pod scheduling is not hindered
by a lack of available resources.

4.4.2 Managing Node Pools

Node pools are groups of nodes that share the same configuration. Kubernetes allows
administrators to create different node pools with varying resource capacities, such as
instances with more CPU or memory. By strategically assigning workloads to specific node
pools, administrators can optimize resource usage and ensure that high-performance
applications run on the appropriate nodes.

A workload that requires a high CPU-to-memory ratio might be placed in a node pool with
instances that provide better CPU performance, while memory-intensive applications might
be scheduled to run on nodes with larger memory resources. Proper node pool configuration
helps maintain performance and ensures efficient use of cluster resources.

5. Advanced Strategies for Kubernetes Resource Management in EKS

Managing resources efficiently within Kubernetes clusters is a crucial aspect of running high-
performance applications at scale. Amazon Elastic Kubernetes Service (EKS) offers managed
Kubernetes clusters with automatic scaling and high availability, making it a popular choice
for organizations. However, with the increased density of workloads in EKS clusters,
managing resources optimally becomes even more challenging. This section delves into
advanced strategies for Kubernetes resource management in high-density EKS clusters,
providing techniques to maximize performance and minimize cost while ensuring reliability.

5.1 Resource Requests & Limits Optimization

The foundation of effective resource management in Kubernetes revolves around setting
appropriate resource requests and limits. Resource requests define the minimum resources
that a container needs to run, while resource limits specify the maximum amount that a
container can use. Optimizing these settings ensures that workloads do not consume excessive
resources or leave resources underutilized.

5.1.1 Fine-Grained Resource Requests

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 582

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

While Kubernetes’ default mechanism is to assign a basic amount of CPU and memory to
pods, there is room for improvement by specifying more granular resource requests. By
analyzing application behavior and workload profiles, fine-grained requests can be set to
avoid over-provisioning or under-provisioning. For example, a microservice handling
lightweight requests may not need as much memory as one processing large datasets.

Fine-tuning resource requests based on the container's role in the application can also lead to
improved overall cluster efficiency. To achieve this, it’s crucial to gather historical resource
consumption data and adjust based on peak usage patterns rather than setting static values.

5.1.2 Dynamic Resource Adjustments

Workloads change frequently, which can lead to either under-provisioning or over-
provisioning of resources. To handle this, it’s essential to use tools like the Kubernetes Vertical
Pod Autoscaler (VPA). The VPA can automatically adjust the resource requests and limits of
pods based on observed usage, ensuring containers have the right amount of CPU and
memory. This dynamic adjustment reduces the chances of resource starvation or over-
allocation.

The VPA also helps prevent the "thrashing" problem, where pods may be evicted or throttled
due to incorrect resource allocation. By continuously monitoring the usage patterns, the VPA
can fine-tune resource allocation, which is especially important in high-density environments
where resource contention is more likely.

5.2 Horizontal Pod Autoscaling

Kubernetes' Horizontal Pod Autoscaler (HPA) enables automatic scaling of the number of pod
replicas based on observed CPU or memory usage. In high-density EKS clusters, HPA plays
a key role in managing workload elasticity without overloading any node.

5.2.1 Advanced Metrics for Autoscaling

Although the default metric for HPA is CPU and memory usage, more advanced metrics can
be leveraged for better decision-making. Custom metrics such as request/response rates,
queue lengths, or external system performance indicators can be used to scale pods.
Integrating Kubernetes with a metrics server and using tools like Prometheus can provide
these custom metrics.

Using these advanced metrics ensures that scaling is based on the specific needs of the
application. For instance, a web service’s scaling may need to be tied to incoming HTTP
request rates, while a batch processing job might require scaling based on queue size or job
completion times.

5.2.2 Scaling Non-Critical Services

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 583

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

Not all services in Kubernetes require the same level of scalability. For non-critical or low-
priority services, implementing horizontal scaling with lower priority or throttling
mechanisms can help avoid wasting resources. For example, background jobs, monitoring
services, or less time-sensitive APIs can be scaled in a way that does not interfere with critical
application workloads.

By setting different scaling strategies for critical and non-critical services, the cluster can
maintain its overall performance while ensuring that non-essential services don’t consume
resources unnecessarily.

5.2.3 Scaling Based on Node Capacity

It’s important to manage both pod-level and node-level scaling. The Cluster Autoscaler, an
add-on for Kubernetes, automatically adjusts the number of nodes in an EKS cluster based on
resource requirements. This helps ensure that there are enough resources available for new
pods when scaling up and optimizes resource usage when scaling down.

While the HPA adjusts the number of pod replicas, the Cluster Autoscaler takes care of
provisioning and decommissioning nodes. This ensures a balanced resource allocation across
the cluster, avoiding issues like node resource exhaustion or inefficient pod placement.

5.3 Resource Affinity & Anti-Affinity

Kubernetes provides mechanisms for controlling how pods are scheduled onto nodes through
resource affinity & anti-affinity. These concepts are critical in high-density environments
where resource contention and failures need to be mitigated.

5.3.1 Anti-Affinity for Fault Tolerance

On the flip side, pod anti-affinity helps ensure that critical services are spread across multiple
nodes or availability zones to avoid single points of failure. By leveraging anti-affinity rules,
pods that are critical for high availability, such as replicas of a microservice, can be scheduled
on separate nodes.

In EKS, where high availability and fault tolerance are key priorities, anti-affinity rules play a
crucial role in preventing overloading any single node. This ensures that even if a node fails,
other nodes with similar workloads are available to take over, thus avoiding downtime.

5.3.2 Affinity for Optimal Resource Distribution

Pod affinity allows certain pods to be scheduled together on the same node, which is useful
for workloads that benefit from co-location, such as when high inter-pod communication or
shared cache resources are required. For instance, stateful applications like databases might
perform better if their primary and replica pods are co-located.

Properly managing pod affinity in high-density EKS clusters ensures that resource
consumption is balanced across nodes, preventing over-utilization of specific nodes and

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 584

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

ensuring better distribution of workloads. The right affinity rules enable workloads to be
placed where resources are available while maximizing performance.

5.4 Node Resource Management

Proper node management is essential in high-density Kubernetes clusters. In EKS, nodes are
provisioned as EC2 instances, and managing them efficiently can directly impact performance
and cost.

By using EC2 instance types that match the resource requirements of your workloads, you can
avoid unnecessary overspending on unused capacity. For example, compute-heavy
workloads should be run on compute-optimized EC2 instances, while memory-intensive
applications should use memory-optimized instances.

Leveraging Spot Instances or Savings Plans for non-critical workloads can significantly reduce
operational costs. Since Spot Instances are typically available at lower costs than On-Demand
Instances, they can be an excellent choice for scaling workloads that do not require guaranteed
availability.

5.5 Efficient Resource Monitoring & Logging

Effective resource management in Kubernetes is not possible without proper monitoring and
logging. In high-density environments, where thousands of pods and nodes are in operation,
monitoring becomes even more important.

Utilizing tools like Prometheus for monitoring, combined with Grafana for visualization,
allows teams to get real-time insights into resource usage across the entire cluster. With
custom dashboards and alerting mechanisms, administrators can identify bottlenecks,
resource starvation, and inefficient scaling in real time.

Logging solutions like Elasticsearch and Fluentd can aggregate logs from all services within
the cluster, providing detailed visibility into application performance. By integrating
monitoring and logging, Kubernetes administrators can ensure that resource allocation
remains optimized, making it easier to track and resolve performance issues proactively.

6. Conclusion

Effective resource management is crucial in Kubernetes environments, mainly when
operating clusters in high-density EKS (Elastic Kubernetes Service). By optimizing resource
allocation, companies can achieve higher efficiency, reduced costs, and improved overall
performance. A critical component of resource optimization in Kubernetes is setting
appropriate resource limits and requests for containers. This ensures that each pod gets the
necessary resources to run efficiently without over-provisioning, which can lead to
unnecessary costs. Tools like the Kubernetes scheduler also play a significant role in ensuring
that workloads are distributed optimally across nodes, balancing the load & preventing any
one node from becoming a bottleneck. Implementing horizontal pod autoscaling (HPA)
further aids in maintaining optimal resource usage by adjusting the number of pod replicas

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 585

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

based on real-time demand, preventing resource waste and application downtime during
traffic spikes.

Moreover, adopting monitoring and observability practices is key to understanding resource
usage patterns and addressing potential inefficiencies. Kubernetes provides various tools,
such as Prometheus, Grafana, & the Kubernetes Metrics Server, to track and visualize resource
consumption across pods, nodes, and clusters. These insights enable teams to identify over-
consumed resources, underutilized nodes, and other issues impacting performance.
Additionally, with the rise of virtualized and serverless technologies within Kubernetes
ecosystems, utilizing advanced features like AWS’s Spot Instances and the EKS-managed
compute optimizations can lead to further cost reductions while maintaining the required
capacity. Ultimately, by adopting a proactive and data-driven approach to resource
management, organizations can maximize the performance of their EKS clusters while
controlling costs, ensuring scalability, and providing a seamless experience for users across a
high-density environment.

7. References:

1. Kelley, R., Antu, A. D., Kumar, A., & Xie, B. (2020, October). Choosing the Right Compute
Resources in the Cloud: An analysis of the compute services offered by Amazon, Microsoft
and Google. In 2020 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC) (pp. 214-223). IEEE.

2. Liu, P. (2021). Enabling Distributed Applications Optimization in Cloud Environment.

3. Marie-Magdelaine, N. (2021). Observability and resources managements in cloud-native
environnements (Doctoral dissertation, Université de Bordeaux).

4. MUSTYALA, A. (2021). Dynamic Resource Allocation in Kubernetes: Optimizing Cost and
Performance. EPH-International Journal of Science And Engineering, 7(3), 59-71.

5. Sayfan, G. (2018). Mastering Kubernetes: Master the art of container management by using
the power of Kubernetes. Packt Publishing Ltd.

6. Mulubagilu Nagaraj, A. (2020). Optimizing Kubernetes Performance by Handling Resource
Contention with Custom Scheduler (Doctoral dissertation, Dublin, National College of
Ireland).

7. Rossi, F., Cardellini, V., Presti, F. L., & Nardelli, M. (2020). Geo-distributed efficient
deployment of containers with kubernetes. Computer Communications, 159, 161-174.

8. Wei-guo, Z., Xi-lin, M., & Jin-zhong, Z. (2018, November). Research on kubernetes' resource
scheduling scheme. In Proceedings of the 8th International Conference on Communication
and Network Security (pp. 144-148).

9. Li, Z., Wei, H., Lyu, Z., & Lian, C. (2021). Kubernetes-container-cluster-based architecture
for an energy management system. IEEE Access, 9, 84596-84604.

10. Menouer, T. (2021). KCSS: Kubernetes container scheduling strategy. The Journal of
Supercomputing, 77(5), 4267-4293.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 586

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

11. Douhara, R., Hsu, Y. F., Yoshihisa, T., Matsuda, K., & Matsuoka, M. (2020, December).
Kubernetes-based workload allocation optimizer for minimizing power consumption of
computing system with neural network. In 2020 International Conference on Computational
Science and Computational Intelligence (CSCI) (pp. 1269-1275). IEEE.

12. Zhao, A., Huang, Q., Huang, Y., Zou, L., Chen, Z., & Song, J. (2019, July). Research on
resource prediction model based on kubernetes container auto-scaling technology. In IOP
Conference Series: Materials Science and Engineering (Vol. 569, No. 5, p. 052092). IOP
Publishing.

13. Santos, J., Wauters, T., Volckaert, B., & De Turck, F. (2019, June). Towards network-aware
resource provisioning in kubernetes for fog computing applications. In 2019 IEEE Conference
on Network Softwarization (NetSoft) (pp. 351-359). IEEE.

14. Rohadi, E., Rahmad, C., Chrissandy, F., & Amalia, A. (2021, March). Study on network
management systems by using Docker Kubernetes. In IOP Conference Series: Materials
Science and Engineering (Vol. 1098, No. 2, p. 022093). IOP Publishing.

15. Beltre, A. M., Saha, P., Govindaraju, M., Younge, A., & Grant, R. E. (2019, November).
Enabling HPC workloads on cloud infrastructure using Kubernetes container orchestration
mechanisms. In 2019 IEEE/ACM International Workshop on Containers and New
Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-HPC) (pp. 11-20).
IEEE.

16. Boda, V. V. R., & Immaneni, J. (2021). Healthcare in the Fast Lane: How Kubernetes and
Microservices Are Making It Happen. Innovative Computer Sciences Journal, 7(1).

17. Immaneni, J. (2021). Using Swarm Intelligence and Graph Databases for Real-Time Fraud
Detection. Journal of Computational Innovation, 1(1).

18. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2021). Unified Data
Architectures: Blending Data Lake, Data Warehouse, and Data Mart Architectures. MZ
Computing Journal, 2(2).

19. Nookala, G. (2021). Automated Data Warehouse Optimization Using Machine Learning
Algorithms. Journal of Computational Innovation, 1(1).

20. Komandla, V. Strategic Feature Prioritization: Maximizing Value through User-Centric
Roadmaps.

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 587

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

21. Komandla, V. Enhancing Security and Fraud Prevention in Fintech: Comprehensive
Strategies for Secure Online Account Opening.

22. Thumburu, S. K. R. (2021). Data Analysis Best Practices for EDI Migration Success. MZ
Computing Journal, 2(1).

23. Thumburu, S. K. R. (2021). The Future of EDI Standards in an API-Driven World. MZ
Computing Journal, 2(2).

24. Gade, K. R. (2021). Data-Driven Decision Making in a Complex World. Journal of
Computational Innovation, 1(1).

25. Gade, K. R. (2021). Migrations: Cloud Migration Strategies, Data Migration Challenges,
and Legacy System Modernization. Journal of Computing and Information Technology, 1(1).

26. Katari, A. Conflict Resolution Strategies in Financial Data Replication Systems.

27. Katari, A., & Rallabhandi, R. S. DELTA LAKE IN FINTECH: ENHANCING DATA LAKE
RELIABILITY WITH ACID TRANSACTIONS.

28. Boda, V. V. R., & Immaneni, J. (2019). Streamlining FinTech Operations: The Power of
SysOps and Smart Automation. Innovative Computer Sciences Journal, 5(1).

29. Nookala, G., Gade, K. R., Dulam, N., & Thumburu, S. K. R. (2020). Data Virtualization as
an Alternative to Traditional Data Warehousing: Use Cases and Challenges. Innovative
Computer Sciences Journal, 6(1).

30. Thumburu, S. K. R. (2020). Interfacing Legacy Systems with Modern EDI Solutions:
Strategies and Techniques. MZ Computing Journal, 1(1).

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 588

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

31. Muneer Ahmed Salamkar. Scalable Data Architectures: Key Principles for Building
Systems That Efficiently Manage Growing Data Volumes and Complexity. Journal of AI-
Assisted Scientific Discovery, vol. 1, no. 1, Jan. 2021, pp. 251-70

32. Muneer Ahmed Salamkar, and Jayaram Immaneni. Automated Data Pipeline Creation:
Leveraging ML Algorithms to Design and Optimize Data Pipelines. Journal of AI-Assisted
Scientific Discovery, vol. 1, no. 1, June 2021, pp. 230-5

33. Muneer Ahmed Salamkar, and Karthik Allam. Data Integration Techniques: Exploring
Tools and Methodologies for Harmonizing Data across Diverse Systems and Sources.
Distributed Learning and Broad Applications in Scientific Research, vol. 6, June 2020

34. Naresh Dulam, et al. “The AI Cloud Race: How AWS, Google, and Azure Are Competing
for AI Dominance ”. Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, Dec. 2021, pp.
304-28

35. Naresh Dulam, et al. “Kubernetes Operators for AI ML: Simplifying Machine Learning
Workflows”. African Journal of Artificial Intelligence and Sustainable Development, vol. 1,
no. 1, June 2021, pp. 265-8

36. Naresh Dulam, et al. “Data Mesh in Practice: How Organizations Are Decentralizing Data
Ownership ”. Distributed Learning and Broad Applications in Scientific Research, vol. 6, July
2020

37. Sarbaree Mishra. “Leveraging Cloud Object Storage Mechanisms for Analyzing Massive
Datasets”. African Journal of Artificial Intelligence and Sustainable Development, vol. 1, no.
1, Jan. 2021, pp. 286-0

38. Sarbaree Mishra, et al. “A Domain Driven Data Architecture For Improving Data Quality
In Distributed Datasets”. Journal of Artificial Intelligence Research and Applications, vol. 1,
no. 2, Aug. 2021, pp. 510-31

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

Australian Journal of Machine Learning Research & Applications
By Sydney Academics 589

Australian Journal of Machine Learning Research & Applications

Volume 2 Issue 1
Semi Annual Edition | Jan - June, 2022

This work is licensed under CC BY-NC-SA 4.0.

39. Sarbaree Mishra, et al. “Training AI Models on Sensitive Data - the Federated Learning
Approach”. Distributed Learning and Broad Applications in Scientific Research, vol. 6, Apr.
2020

40. Babulal Shaik. Developing Predictive Autoscaling Algorithms for Variable Traffic Patterns
. Journal of Bioinformatics and Artificial Intelligence, vol. 1, no. 2, July 2021, pp. 71-90

41. Babulal Shaik, et al. Automating Zero-Downtime Deployments in Kubernetes on Amazon
EKS . Journal of AI-Assisted Scientific Discovery, vol. 1, no. 2, Oct. 2021, pp. 355-77

https://sydneyacademics.com/
https://sydneyacademics.com/index.php/ajmlra

