Neural Network Optimization Techniques: Studying optimization techniques for training neural networks, including gradient-based methods and metaheuristic algorithms
Keywords:
Convergence AnalysisAbstract
Neural networks have demonstrated remarkable success in various machine learning tasks, but training them efficiently remains a significant challenge. Optimization techniques play a crucial role in improving the training process by minimizing the loss function. This paper provides a comprehensive overview of neural network optimization techniques, including both traditional gradient-based methods and more recent metaheuristic algorithms. We discuss the theoretical foundations, advantages, and limitations of these techniques, along with practical considerations for their implementation. Furthermore, we present a comparative analysis of these techniques based on their convergence properties, computational efficiency, and performance on benchmark datasets. This paper aims to provide researchers and practitioners with a deeper understanding of neural network optimization, enabling them to select the most suitable techniques for their applications.
Downloads
References
Tatineni, Sumanth, and Anjali Rodwal. “Leveraging AI for Seamless Integration of DevOps and MLOps: Techniques for Automated Testing, Continuous Delivery, and Model Governance”. Journal of Machine Learning in Pharmaceutical Research, vol. 2, no. 2, Sept. 2022, pp. 9-41, https://pharmapub.org/index.php/jmlpr/article/view/17.
K. Joel Prabhod, “ASSESSING THE ROLE OF MACHINE LEARNING AND COMPUTER VISION IN IMAGE PROCESSING,” International Journal of Innovative Research in Technology, vol. 8, no. 3, pp. 195–199, Aug. 2021, [Online]. Available: https://ijirt.org/Article?manuscript=152346
Tatineni, Sumanth, and Venkat Raviteja Boppana. "AI-Powered DevOps and MLOps Frameworks: Enhancing Collaboration, Automation, and Scalability in Machine Learning Pipelines." Journal of Artificial Intelligence Research and Applications 1.2 (2021): 58-88.