Implementing Machine Learning for Visual Asset Tracking in Agile Project Management

Authors

  • Alice Thompson Assistant Professor, Department of Computer Science, Stanford University, Stanford, USA Author

Keywords:

Machine learning, visual asset tracking, Agile project management, computer vision, resource allocation, dynamic project environments

Abstract

The application of machine learning and computer vision technologies in Agile project management is rapidly evolving, providing innovative solutions for visual asset tracking. This paper investigates how these technologies enhance real-time decision-making and resource allocation in dynamic project environments. Agile methodologies demand adaptability and quick responses to changing conditions, and visual asset tracking powered by machine learning can significantly improve efficiency and transparency. By analyzing existing literature and case studies, this research highlights the benefits, challenges, and future directions of implementing machine learning for visual asset tracking. The findings indicate that leveraging these technologies can lead to more effective project management practices, resulting in better outcomes and improved stakeholder satisfaction.

Downloads

Download data is not yet available.

References

Gayam, Swaroop Reddy. "Deep Learning for Predictive Maintenance: Advanced Techniques for Fault Detection, Prognostics, and Maintenance Scheduling in Industrial Systems." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 53-85.

George, Jabin Geevarghese. "Utilizing Rules-Based Systems and AI for Effective Release Management and Risk Mitigation in Essential Financial Systems within Capital Markets." Journal of Artificial Intelligence Research and Applications 3.2 (2023): 631-676.

Yellepeddi, Sai Manoj, et al. "AI-Powered Intrusion Detection Systems: Real-World Performance Analysis." Journal of AI-Assisted Scientific Discovery 4.1 (2024): 279-289.

Nimmagadda, Venkata Siva Prakash. "Artificial Intelligence for Supply Chain Visibility and Transparency in Retail: Advanced Techniques, Models, and Real-World Case Studies." Journal of Machine Learning in Pharmaceutical Research 3.1 (2023): 87-120.

Putha, Sudharshan. "AI-Driven Predictive Maintenance for Smart Manufacturing: Enhancing Equipment Reliability and Reducing Downtime." Journal of Deep Learning in Genomic Data Analysis 2.1 (2022): 160-203.

Sahu, Mohit Kumar. "Advanced AI Techniques for Predictive Maintenance in Autonomous Vehicles: Enhancing Reliability and Safety." Journal of AI in Healthcare and Medicine 2.1 (2022): 263-304.

Kondapaka, Krishna Kanth. "AI-Driven Predictive Maintenance for Insured Assets: Advanced Techniques, Applications, and Real-World Case Studies." Journal of AI in Healthcare and Medicine 1.2 (2021): 146-187.

Kasaraneni, Ramana Kumar. "AI-Enhanced Telematics Systems for Fleet Management: Optimizing Route Planning and Resource Allocation." Journal of AI in Healthcare and Medicine 1.2 (2021): 187-222.

Pattyam, Sandeep Pushyamitra. "Artificial Intelligence in Cybersecurity: Advanced Methods for Threat Detection, Risk Assessment, and Incident Response." Journal of AI in Healthcare and Medicine 1.2 (2021): 83-108.

Alluri, Venkat Rama Raju, et al. "Automated Testing Strategies for Microservices: A DevOps Approach." Distributed Learning and Broad Applications in Scientific Research 4 (2018): 101-121.

J. Brownlee, Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python. Melbourne, Australia: Machine Learning Mastery, 2019.

T. Chen, and C. Guestrin, "XGBoost: A scalable tree boosting system," in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785-794.

F. Chollet, Deep Learning with Python, 2nd ed. Greenwich, CT: Manning Publications, 2021.

G. E. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, Nov. 2012.

R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning," in Proceedings of the 25th International Conference on Machine Learning, 2008, pp. 160-167.

M. Abadi et al., "TensorFlow: A system for large-scale machine learning," in Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 2016, pp. 265-283.

Y. Zhang and Q. Yang, "A survey on multi-task learning," IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 12, pp. 5586-5609, Dec. 2022.

Y. Wang, Q. Chen, and W. Zhu, "Zero-shot learning: A comprehensive review," IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 7, pp. 2172-2188, Jul. 2019.

Downloads

Published

05-12-2023

How to Cite

[1]
Alice Thompson, “Implementing Machine Learning for Visual Asset Tracking in Agile Project Management”, Australian Journal of Machine Learning Research & Applications, vol. 3, no. 2, pp. 546–554, Dec. 2023, Accessed: Jan. 04, 2025. [Online]. Available: https://sydneyacademics.com/index.php/ajmlra/article/view/163

Similar Articles

1-10 of 181

You may also start an advanced similarity search for this article.